

Bericht

Orientierende Altlasten- und Baugrunduntersuchung

67227 Frankenthal, Ostseite des Ostparks

Projekt Nr. 934130 Bericht-Nr. 934130-bt01

19. April 2017

Stadtverwaltung Frankenthal (Pfalz)
Bereich Gebäude und Grundstücke
Neumayerring 72
67227 Frankenthal (Pfalz)

RSK Alenco GmbH

Barthelsmühlring 18, 76870 Kandel/Pfalz Tel. +49 7275 9857 – 0, Fax +49 7275 9857 – 99

i.A. Dipl.-Geol. M. Wäsch

i.A. Dipl.-Geol. S. Reiss

Zusammenfassung

Die Stadt Frankenthal plant den Südteil eines Grünstreifens am Ostpark von 67227 Frankenthal einer Nutzung zuzuführen. Derzeit in Diskussion ist die Errichtung einer Kindertagesstätte in Container-Bauweise. Die hier vorgelegte orientierende Altlasten- und Baugrunduntersuchung soll dabei als eine Grundlage der Entscheidung über die Geländenutzung dienen.

Geotechnisch gesehen sind die angetroffenen, inhomogenen Auffüllungen als Gründungsebene ohne gründungstechnische Zusatzmaßnahmen wie Bodenaustausch nicht direkt geeignet. Die unterhalb der Auffüllungen anstehenden Schluffe sind - unter Berücksichtigung baugrundtechnischer Zusatzmaßnahmen - für die Gründung von Bauteilen geeignet. Art und Umfang der erforderlichen gründungstechnischen Maßnahmen können aber erst nach Vorliegen von Daten zum geplanten Bauprojekt definiert werden.

Grundwasser ist ab ca. 87 m ü. NN zu erwarten, sodass eine permanente Grundwasserhaltung erst bei Aushubtiefen > 2,0 m u. GOK erforderlich werden könnte.

Bei Erdarbeiten ist mit Mehrkosten insbesondere für die Entsorgung der belasteten Auffüllungen (Z1.2 bis > Z2 gemäß LAGA (2004) aufgrund erhöhten PAK-Gehalte) zu rechnen. Sobald das Vorhaben konkretisiert wird, können Kostenschätzungen zur Ermittlung des baugrundtechnisch bedingten Mehraufwandes aufgestellt werden.

Inhalt

		Seite
1 1.1 1.2 1.3	Einleitung Anlass und Zielstellung Verwendete Unterlagen Einschränkungen	1 1
2 2.1 2.2 2.3	Standortbeschreibung Lage und Umgrenzung des Untersuchungsgebiets Geologischer und hydrogeologischer Überblick Vornutzung des Untersuchungsgeländes	1 2
3 3.1 3.2	Durchgeführte Untersuchungen Bohrungen und Sondierungen Vermessung	3
4	Untergrundaufbau und Grundwasserverhältnisse	4
5 5.1 5.2 5.2.1 5.2.2 5.3	Ergebnisse der Schadstoffuntersuchungen	5 5 5
5.4	Abfallrechtliche Bewertung	
6 6.1 6.2 6.3	Bautechnische Beurteilung Bodengruppen, Bodenklassen, Frostsicherheit, Bodenkennwerte Erdbebenwirkung Frostzone	10 11
7 7.1 7.3 7.4	Baugrundbewertung Allgemeine Baugrundbeurteilung	12 13
8	Empfehlungen zur weiteren Vorgehensweise	14
9	Schlussbemerkungen	14

Tabellen

Tabelle 1:	Grundwasserstände in der Umgebung	2
Tabelle 2:	Analysenergebnisse der Bodenuntersuchungen	
Tabelle 3:	Prüf- bzw. Maßnahmenwerte nach BBodSchV (2004)	
Tabelle 4:	Orientierende Prüfwerte (oPW) nach Merkblatt ALEX 02	7
Tabelle 5:	Auszug aus der LAGA – Richtlinie M20 (TR Boden)	8
Tabelle 6:	Bautechnische Klassifizierung	10
Tabelle 7:	<u> </u>	

Anlagen

Anlage 1 Lagepläne
Anlage 2 Schichtprofile KRB
Anlage 3 Rammdiagramme
Anlage 4 Laborprüfbericht

Abkürzungen

ALENCO RSK Alenco GmbH

DPH schwere Rammsondierung

GOK Geländeoberkante KRB Kleinrammbohrung

LAGA Länderarbeitsgemeinschaft Abfall

m ü. NN Meter über Normalnull RKS Rammkernsondierung

1 Einleitung

1.1 Anlass und Zielstellung

Die Stadt Frankenthal plant den Grünstreifen an der Ostseite des Ostparks von 67227 Frankenthal einer Nutzung zuzuführen. Eine der Möglichkeiten ist die Aufstellung von Containern im Südteil zur Nutzung als Kindertagesstätte mit einer Zufahrt von der Straße "Am Kanal". Weiter konkretisierte Planungen bestehen derzeit nicht.

RSK Alenco GmbH, 76870 Kandel, wurde von der Stadtverwaltung Frankenthal mit der Durchführung einer Orientierenden Altlasten- und Baugrunduntersuchung sowie der Ausarbeitung des zugehörigen Berichts beauftragt. Der Bericht soll als Grundlage der Entscheidung über die weitere Geländenutzung dienen. Die Ergebnisse der o.g. Untersuchungsmaßnahmen werden im Folgenden dargestellt und bewertet.

1.2 Verwendete Unterlagen

- /1/ Geologische Übersichtskarte 1:200.000, CC 7110 Mannheim; Hrsg: Bundesanstalt für Geowissenschaften und Rohstoffe, Hannover 1986
- /2/ Hydrogeologische Kartierung und Grundwasserbewirtschaftung im Rhein-Neckar-Raum Fortschreibung 1963-1998, UMBW und LUBW RLP

1.3 Einschränkungen

Der vorliegende Bericht basiert ausschließlich auf dem vorgefundenen Sachverhalt, dient nur der genannten Zielstellung und ist ausschließlich für den Auftraggeber bestimmt. Über die vertraglich vereinbarte Gewährleistung hinaus werden keine ausdrücklichen oder stillschweigenden Garantien hinsichtlich der in diesem Bericht enthaltenen Empfehlungen oder sonstigen von RSK ALENCO erbrachten Leistungen übernommen.

2 Standortbeschreibung

2.1 Lage und Umgrenzung des Untersuchungsgebiets

Der Untersuchungsstandort befindet sich im östlichen Stadtgebiet Frankenthals am Rand der Sportanlagen des Ostparks auf dem Grünstreifen (ca. 332 m und ca. 25 m) mit der Flurstücksnummer 1407/22 zwischen den Straßen "Am Kanal" im Süden und "An der Nachweide" im Norden (siehe Anlage 1.1). Von dem Grünstreifen wird ein Teilstück von ca. 130 m Länge im Süden für die Bebauung in Betracht gezogen.

Die Untersuchungsfläche grenzt westlich an die Sportplätze des Ostparks mit einem Nord-Südverlaufenden Fuß/Radweg und östlich an die Gärten der Straße "Amselweg". Im Süden grenzt die Freifläche an die Straße "Am Kanal". In Richtung Norden endet Untersuchungsfläche etwa in Höhe des mittleren Sportplatzes.

Die Geländehöhe beträgt ca. 91 m ü. NN. Nennenswerte morphologische Geländestrukturen sind nicht vorhanden, wobei im Gelände kleinräumig Höhenunterschiede von wenigen Dezimeter festgestellt wurden. Der Flächenschwerpunkt liegt bei Rechts 34⁵⁴⁶⁶⁸ und Hoch 54⁸⁹⁰⁵⁰ nach Gauß-Krüger bzw. Ost 454607 und Nord 5487294 in Zone 32U nach UTM.

2.2 Geologischer und hydrogeologischer Überblick

Der Untergrund des Geländes ist von quartären Hochflutsedimenten auf den Niederterrassen (hier Frankenthaler Terrasse) der Rheinebene geprägt. Im natürlichen Zustand sind lehmige Sande bzw. sandige Lehme über schluffigen bis lehmigen Sanden und Kiesen des Oberen Kieslagers (OKL) zu erwarten.

Aus den Vor-Ort-Befunden geht hervor, dass das Gelände zwischen 0,4 bis ca. 1,8 m unter GOK mit bauschutthaltigem Sand und Kies sowie bereichsweise Schluff aufgefüllt ist.

Gemäß der hydrogeologischen Kartierung ist das Grundwasser zwischen 3-4 m unter GOK zu erwarten /2/. Während der Geländearbeiten wurde im Bereich der Untersuchungsfläche kein freies Grundwasser angetroffen, wobei evtl. in einem Aufschluss (KRB 07) der Übergang zwischen gesättigter und ungesättigter Zone erreicht wurde.

Die in der weiteren Umgebung der Untersuchungsfläche liegenden Grundwassermessstellen zeigten zwischen Januar 2016 und 2017 die in folgender Tabelle 1 zusammengefassten Grundwasserstände, was sich mit den Vor-Ort-Befunden deckt:

Tabelle 1: Grundwasserstände in der Umgebung

Messstelle	Lage	Grundwasserstand
2391169700	ca. 900 nordöstlich	ca. 87 m ü. NN
2391258700	ca. 1.000 m west-nordwestlich	ca. 88,5 m ü. NN
2391256500	ca. 1.000 m südöstlich	ca. 88,1 m ü. NN

Die Grundwasserfließrichtung weist entsprechend der hydrogeologischen Kartierung in Richtung Ost-Nordost.

Das Untersuchungsgebiet liegt innerhalb des per Rechtsverordnung festgelegten, gesetzlichen Überschwemmungsgebiets des Rheins.

Ca. 500 m östlich der Untersuchungsfläche fließt die lokale Vorflut Isenach in nördlicher Richtung ab. Es ist ferner anzunehmen, dass die lokalen Grundwasserverhältnisse durch den ehemaligen Frankenthaler Kanal mit beeinflusst werden. Dieser Kanal verlief parallel der Straße "Am Kanal" und verband den ehemaligen Frankenthaler Hafen (etwa 800 m westlich des Untersuchungsgebiets) mit dem Rhein. Regional wird das Abflussregime aber vom Rhein beherrscht.

2.3 Vornutzung des Untersuchungsgeländes

Eine Vornutzung des Geländes ist nicht bekannt, es ist aber anzunehmen, dass das Gelände im Zuge der Errichtung des Sportflächen des Ostpark mit angelegt und verfüllt wurde.

Durchgeführte Untersuchungen

Bohrungen und Sondierungen

Zur Erkundung des Untergrundes wurden am 03.03.2017 folgende Bohrungen und Sondierungen durchgeführt:

7 Kleinrammbohrungen (KRB 1 bis KRB 7)

Bohrverfahren: Kleinrammbohrungen nach DIN EN ISO 22475-1

Bohrdurchmesser: 50 bis 60 mm Tiefe: bis 3 m unter GOK Lage der Ansatzpunkte: siehe Anlage 1 Bohrprofile: siehe Anlage 2

3 schwere Rammsondierungen (DPH, im Nahbereich der KRB 1, 4 und 7)

Sondierverfahren: Schwere Rammsondierungen (DPH) nach

DIN EN ISO 22476-2

Tiefe: bis 3 m unter GOK Lage der Ansatzpunkte: siehe Anlage 1 Rammdiagramme: siehe Anlage 3

Der im Rahmen der Bohrarbeiten angetroffene lithologische Aufbau des Untergrundes wurde nach DIN EN ISO 14688 angesprochen und unter organoleptischen (optischen und geruchlichen) Gesichtspunkten begutachtet. Die baugrundtechnische Probennahme erfolgt schichtweise unter Berücksichtigung der Ergebnisse der lithologischen und organoleptischen Bodenansprache.

Die entnommenen Bodenproben wurden in luftdicht schließende Gefäße abgepackt und dem beauftragten Labor zur Untersuchung überstellt oder als Rückstellproben eingelagert.

Aus ausgewählten Proben der Aufschlüsse KRB 01, 02, 03 und 05 wurde eine repräsentative Mischprobe (MP1) der Auffüllungen erstellt und labortechnisch orientierend auf den Parameterumfang der LAGA Boden (2004) im Feststoff und Eluat untersucht. Außerdem wurde eine Probe aus den Auffüllungen des Aufschlusses KRB 6 (0,1 -0,5 m) auf die Verdachtsparameter Schwermetalle und Arsen sowie Kohlenwasserstoffe (KW) und Polycyclische Kohlenwasserstoffe (PAK₁₆) untersucht.

3.2 Vermessung

Die Bohransatzpunkte wurden nach Abschluss der Arbeiten sowohl lage- als auch höhenmäßig eingemessen. Die Höhen der jeweiligen Ansatzpunkte sind in der Anlage 2 verzeichnet.

Untergrundaufbau und Grundwasserverhältnisse

Im Rahmen der durchgeführten Untersuchung wurde das nachfolgend zusammenfassend beschriebene Bodenmaterial angetroffen:

- bis 0,1/0,5 m u. GOK: Auffüllung: Schluff, feinsandig, humos, steif (Oberboden)

- bis 0,4/1,8 m u. GOK: Auffüllung: Variierende Zusammensetzung (Kiese, Sande, Schluffe

in wechselnden Anteilen; Beimengungen von Bauschutt, Schotter,

Holzresten, Asche); erdfeucht

- bis 2,2/>3,0 m u. GOK: (in KRB 04, 05, 06 bis zur

Endteufe)

Schluff, schwach feinsandig, schwach tonig; steif – halbfest, z.T.

mit sandigen Horizonten

- bis min. 3,0 m u. GOK: (in KRB 01, 02, 03, 07

angetroffen)

Feinsand, schluffig im Wechsel mit Schluff, feinsandig; erdfeucht-

feucht, Schluff steif

Die detaillierte Beschreibung des in den KRB angetroffenen Bodenmaterials sowie die lithologischen Details können den Bohrprofilen in Anlage 2 entnommen werden. Die Rammdiagramme der DPH sind in Anlage 3 dargestellt.

Grundwasser wurde am Ausführungstag in den 3 m tiefen Aufschlüssen nicht angetroffen.

Grundsätzlich ist darauf hinzuweisen, dass der oben dargestellte Untergrundaufbau auf den punktförmig ausgeführten Aufschlüssen basiert. Abweichungen hinsichtlich der Zusammensetzung der Böden sowie ihrer Lagerungsdichte zwischen den Untersuchungspunkten können daher - insbesondere innerhalb der Auffüllungen - nicht ausgeschlossen werden.

5 Ergebnisse der Schadstoffuntersuchungen

5.1 Analysenergebnisse

In der folgenden Tabelle 2 sind die Analysenergebnisse der Bodenproben wiedergegeben. Bei der Untersuchung der Auffüllung nach der Parameterliste der LAGA sind in der Tabelle nur die maßgeblichen Schadstoffparameter aufgeführt. Der zugehörige Laborprüfbericht V171124 ist in Anlage 4 zu finden.

Tabelle 2: Analysenergebnisse der Bodenuntersuchungen

Probe	B(a)P [mg/kg]	PAK ₁₁₋₁₆ [mg/kg]	PAK ₁₋₁₆ [mg/kg]	KW GC [mg/kg]	Schwer- metalle [mg/kg]	ALEX 02 Prüfwert Wirkungs- pfad Boden- Mensch	Zuord- nungswert LAGA M20 Boden
orientierende MP1	abfallrech	tliche Del	daration o	der Auffül	lung / ober unauffäl- lig	er Bereich > oPW 3	> Z2
orientierende	Untersuch	nung der A	Auffüllung	in KRB 6	5		
KRB6/0,1-0,5	0,37	1,59	4,52	< 50	unauffäl- lig	< oPW 3	Z 1.2

Die Mischprobe "MP1" aus den Auffüllungen der Bohrungen KRB1 bis 5 zeigt erhöhte Gehalte an PAK mit 36,61 mg/kg für PAK₁₋₁₆ bzw. 14,2 mg/kg für PAK₁₁₋₁₆. Die Probe "KRB6/0,1-0,5" ergab für PAK₁₋₁₆ einen leicht erhöhten Gehalt von 4,52 mg/kg bzw. 1,59 für PAK₁₁₋₁₆.

5.2 Bewertungsgrundlage

5.2.1 Umweltrechtliche Bewertungsgrundlagen

Die BBodSchV sieht eine nutzungs- und wirkungspfadbezogene Betrachtung von Schutzgütern vor. In der BBodSchV werden die Wirkungspfade Boden-Mensch, Boden-Pflanzen und Boden-Grundwasser betrachtet. Ausgehend vom Ort der Kontamination erfolgt eine Gefährdungsabschätzung für die Schutzgüter Mensch, Pflanzen und Grundwasser. Hierfür stehen sogenannte Prüf- und Maßnahmewerte für verschiedene Nutzungen zur Verfügung.

Des Weiteren stehen zur Bewertung von Boden- und Grundwasserverunreinigungen in Rheinland – Pfalz die Orientierungswerte der Altlasten Expertenliste ALEX Merkblatt ALEX 02 "Orientierungswerte für die abfall- und wasserwirtschaftliche Beurteilung" des Landesamtes für Umweltschutz und Gewerbeaufsicht mit Landesamt für Wasserwirtschaft (Stand 1997) sowie das Merkblätter ALEX 14 "Arbeitshilfe bei der Altlastenbearbeitung" zur Verfügung.

Wirkungspfad Boden - Mensch

Nach der BBodSchV ist der Wirkungspfad Boden – Mensch in verschiedene Nutzungen unterteilt (Kinderspielflächen, Wohngebiete, Park- und Freizeitanlagen, Industrie- und Gewerbegrundstücke). Für den Wirkungspfad Boden-Mensch sind in Abhängigkeit der geplanten Nutzung die relevanten Prüfwerte in Betracht zu ziehen. Zur Überprüfung dieses Wirkungspfads wurden orientierend Oberflächenmischproben aus dem Tiefenbereich 0,0 bis 0,1 bzw. 0,15 m entnommen.

In den nachfolgenden Tabellen sind die relevanten Prüfwerte für den Wirkungspfad Boden-Mensch wiedergegeben.

Tabelle 3: Prüf- bzw. Maßnahmenwerte nach BBodSchV (2004), Wirkungspfad Boden Mensch

	PW Kinderspiel- flächen	PW Wohnge- biete	PW Park- und Freizeitanlagen	PW Industrie- und Gewer- begebiete
Parameter	[mg/kg]			
Benzo(a)pyren	2	4	10	12
Arsen	25	50	125	140
Chrom	200	400	1.000	1.000
Quecksilber	10	20	50	80
Blei	200	400	1.000	2.000
Cadmium	10	20	50	60
Nickel	70	140	350	900
PCB ₆	0,4	0,8	2	40

Anmerkungen: PW: Prüfwert

Tabelle 4: Orientierende Prüfwerte (oPW) nach Merkblatt ALEX 02, Rheinland-Pfalz Stand Juli 1997 (Boden); Beurteilungswerte nach Merkblatt ALEX 13, Rheinland-Pfalz Stand Sep. 2001 (Boden)

	oPW1 multifunk- tionale Nutzung bzw. Kinder- spielplatz	oPW2 sensible Nutzung bzw. Wohnbebauung	oPW3 nichtsensib le Nutzung bzw. Gewerbe/ Industriegebiet	Beurteilungs- wert
Parameter	[mg/kg]			
KW/H18	300	600	1.500	1.000
PAK n. EPA (1-	10	20	100	25
PAK n. EPA (11-	0,5	1	5	
Benzo(a)pyren				1
Arsen	40	60	100	60
Chrom	100	200	600	500
Kupfer	100	200	1.000	500
Quecksilber	2	10	20	10
Blei	200	500	1.000	500
Zink	300	600	2.000	1.000
Cadmium	2	10	20	10
Nickel	100	200	500	500
PCB _{gesamt} ¹⁾	0,5	1	5	
PCB ₆				3

Anmerkungen: oPW: orientierende Prüfwerte der Zielebene 1-3; 1) PCB_{gesamt} = PCB₆ x 5

5.2.2 Abfallrechtliche Bewertungsgrundlagen

Die Prüfung von Aushubmaterial und Baustoffen hinsichtlich der Verwertbarkeit (abfallrechtliche Bewertung) erfolgt auf Grundlage der von der Ländergemeinschaft Abfall (LAGA) vorgegebenen Richtwerte. Seit dem 01.01.2007 gelten in Rheinland-Pfalz für die Beurteilung der Gefährlichkeit von belastetem Boden und Bauschutt gemäß der LAGA - Mitteilung 20 "Anforderungen an die stoffliche Verwertung von mineralischen Abfällen, Teil II Technische Regeln, 1.2 Bodenmaterial (TR Boden)" Stand 5.11.2004 neue Zuordnungswerte.

Für eine Verwertung/Entsorgung sind auszugsweise die Feststoffwerte gemäß LAGA (2004) in folgender Tabelle 5 aufgeführt.

Tabelle 5: Auszug aus der LAGA – Richtlinie M20 (TR Boden): Anforderungen an die stoffliche Verwertung von mineralischen Reststoffen; Stand 5.11.2004

Parameter	Dimension	Z 1	Z 2
Mineralölkohlenwasser-	mg/kg	300 (600) ¹⁾	1.000 (2.000) 1)
Σ PAK ₁₆ n. EPA	mg/kg	$3 (9)^{2)}$ Z 1.1/(Z1.2)	30
Benzo(a)pyren	mg/kg	0,9	3
Σ PCB ₆	mg/kg	0,15	0,5
Arsen	mg/kg	45	150
Blei	mg/kg	210	700
Cadmium	mg/kg	3	10
Chrom (ges.)	mg/kg	180	600
Kupfer	mg/kg	120	400
Nickel	mg/kg	150	500
Quecksilber	mg/kg	1,5	5
Thallium	mg/kg	2,1	7
Zink	mg/kg	450	1.500
Cyanide gesamt	mg/kg	3	10
TOC	Massen-%	1,5	5
BTX (AKW)	mg/kg	1	1
LHKW	mg/kg	1	1

Quelle: Mitteilung der LAGA M20 "Anforderungen an die stoffliche Verwertung von mineralischen Abfällen, Teil II Technische Regeln, 1.2 Bodenmaterial (TR Boden)" Stand 05.11.2004 Anmerkungen:¹¹ Die angegebenen Zuordnungswerte gelten für Kohlenwasserstoffverbindungen mit einer Kettenlänge von C10 bis C22. Der Gesamtgehalt, bestimmt nach E DIN EN 14039 C10-C40, darf insgesamt den in Klammern genannten Wert nicht überschreiten. ²¹ Boden- und Bauschuttmaterial mit Zuordnungswerten >3 mg/kg und ≤ 9 mg/kg darf nur in Gebieten mit hydrogeologisch günstigen Deckschichten eingebaut werden

Bodenmaterialen, welche gefährliche Stoffe > Z2 nach LAGA enthalten, müssen als gefährlicher Abfall gesondert entsorgt werden (Abfallschlüssel EAK 17 05 03*).

Für eine Wiederverwertung von (Boden)Materialien sind in Rheinland-Pfalz neben der Bundebodenschutzverordnung BBodSchV, Stand 1999, die ALEX Informationsblätter 24-26 der Landesämter für Umweltschutz und Gewerbeaufsicht/Wasserwirtschaft zu berücksichtigen.

5.3 Bodenschutzrechtliche Bewertung

Innerhalb der Auffüllung wurden bei Mischprobe "MP1" erhöhte Gehalte an PAK nachgewiesen, die bezogen auf die Summenparameter PAK₁₁₋₁₆ mit 14,2 mg/kg bzw. PAK₁₋₁₆ mit 36,61 mg/kg über den Prüfwerten oPW 3 für nichtsensible Nutzungen wie Gewerbe und Industrie liegen. Der Gehalt an Benzo(a)pyren liegt mit 3,4 mg/kg noch unterhalb des Prüfwerts für Wohngebiete gemäß BBodSchV.

Bei der Probe "KRB6/0,1-0,5" liegen ebenfalls erhöhte Gehalte an PAK₁₁₋₁₆ von 1,59 mg/kg vor, die aber noch unterhalb des Prüfwerts oPW 3 liegen. Der Benzo(a)pyren-Gehalt liegt mit 0,37 mg/kg unterhalb des Prüfwerts für Kinderspielflächen gemäß BBodSchV.

5.4 Abfallrechtliche Bewertung

Die zur orientierenden abfallrechtlichen Einstufung der Auffüllungen entnommene Mischprobe "MP1" weißt mit 36,61 mg/kg einen PAK₁₋₁₆-Gehalt über dem Zuordnungswert Z2 gemäß LAGA (2004) auf. Die orientierende Untersuchung der Auffüllungen in KRB06 ist mit einem PAK₁₋₁₆-Gehalt von 4,52 mg/kg mit Z1.2 zu bewerten. Bei der Entsorgung der Auffüllungen von der Untersuchungsfläche ist gemäß der hier vorgestellten Ergebnisse abfallrechtlich mit Bodenmaterial der Klasse Z1.2 bis > Z2 gemäß LAGA (2004) zu rechnen.

Die abschließende abfallrechtliche Einstufung sollte aufgrund von Haufwerksbeprobungen nach LAGA PN98 durchgeführt werden.

6 Bautechnische Beurteilung

6.1 Bodengruppen, Bodenklassen, Frostsicherheit, Bodenkennwerte

In der nachfolgenden Tabelle 6 sind die gängigen bautechnischen Kenndaten bzw. Bodenklassifizierungen für Ausschreibungen etc. aufgeführt.

Tabelle 6: Bautechnische Klassifizierung

		Oberboden	Auffüllungen	Schluffe	Schluff-Sand- Wechsel
Beschreibung		Schluff, feinsandig, humos	Kiese, Sande, Schluffe, stark variierend	Schluff, schwach feinsandig, schwach tonig	Feinsand, schluffig im Wechsel mit Schluff, feinsandig
Tiefenlage	m u. GOK	0,0 bis 0,1 / 0,5	0,1 / 0,5 bis 0,5 / 1,8	0,5 / 1,8 bis 2,2 / >3,0	ab 2,2 / >3,0
Bodengruppe nach DIN 18196		[OU]	[GU, GU', SU, SU', UL, UM]	UL	SU und UL
Bodenklasse nach DIN 18300		1	3-4	4	3-4
Frostempfindlichkeits-		F3	F1-F3	F3	F2-F3
klasse gem. ZTVE-StB		(sehr frostempfindlich)	(nicht bis sehr frostempfindlich)	(sehr frostempfindlich)	(mittel bis sehr frostempfindlich)

Setzungs- und Grundbruchberechnungen erfordern eine sinnvolle Vereinfachung der angetroffenen Bodenverhältnisse zu einem Baugrundmodell. Das Baugrundmodell ist in der nachfolgenden Tabelle 7 zusammengefasst.

Die Lagerungsdichte und der Bodenaufbau variieren innerhalb der Untersuchungsfläche. Für die Angabe von einheitlichen Werten ist es erforderlich, die ungünstigeren Verhältnisse zugrunde zu legen.

Tabelle 7: Bodenkennwerte

		Oberboden	Auffüllungen	Schluffe	Schluff-Sand- Wechsel
Beschreibung		Schluff, feinsandig, humos	Kiese, Sande, Schluffe, stark variierend	Schluff, schwach feinsandig, schwach tonig	Feinsand, schluffig im Wechsel mit Schluff, feinsandig
Tiefenlage	m u. GOK	0,0 bis 0,1 / 0,5	0,1 / 0,5 bis 0,5 / 1,8	0,5 / 1,8 bis 2,2 / >3,0	ab 2,2 / >3,0
Lagerungsdichte/ Konsistenz		stark wechselnd	stark wechselnd	steif bis halbfest	locker gelagert, steif
γ Wichte (erdfeucht)	kN/m³		18-20	20	20,5
γ Wichte (unter Auftrieb)	kN/m³	keine Angabe da bautechnisch	9-12	10	9
φ' Reibungswinkel	٥	nicht geeignet	27-30	27	29
c' Kohäsion	kN/m²		0	3	0
c _u (undräniert)	kN/m²		0	30	0
E _s Steifemodul	MN/m²		5-15	8	20

Für den Oberboden werden keine Bodenkennwerte angegeben, da er bautechnisch nicht geeignet ist und im Bereich von zu errichtenden Bauwerken ausgebaut werden muss.

6.2 Erdbebenwirkung

Zur Berücksichtigung der Erdbebenwirkung (Erdbebenzone 1) ist gem. DIN 4149 (Ausgabe 04.2005) für die auf dem Untersuchungsgelände vorliegenden Untergrundverhältnisse die Untergrundklasse S sowie die Baugrundklasse C anzusetzen.

6.3 Frostzone

Das untersuchte Gelände liegt nach dem Kommentar zu den ZTVE-StB 09 /3/ in der Frosteinwirkzone I, Gebiet 2, in der Frosteindringtiefen zF von 90 bis 95 cm zu erwarten sind.

7 Baugrundbewertung

7.1 Allgemeine Baugrundbeurteilung

Die in den untersuchten Bereichen angetroffenen Böden können baugrundtechnisch wie folgt bewertet werden:

- Der bis 0,1/0,5 m u. GOK vorhandene Oberboden ist gründungstechnisch ungeeignet und muss im Bereich von gepl. Bauwerken entfernt werden
- Die Auffüllungen sind sehr inhomogen in Zusammensetzung und Lagerungsdichte und sind daher als Gründungsebene direkt nicht geeignet
- Sofern Fundamentsohlen oder Sohlen von Bodenplatten etc. im Bereich der Auffüllungen zu liegen kommen, sind gründungstechnische Zusatzmaßnahmen erforderlich
- Als gründungstechnische Zusatzmaßnahmen kommen, abhängig von der Art/Setzungsempfindlichkeit des geplanten Bauwerks, z. B. ein partieller oder vollständiger Bodenaustausch in Frage
- Die unterhalb der Auffüllungen anstehenden Schluffe liegen in steifer bis halbfester Konsistenz vor und sind bei Beachtung der unten stehenden Maßnahmen für die Gründung von Bauteilen mit geringen baugrundtechnischen Anforderungen direkt geeignet
- Die Schluffe sind empfindlich gegenüber Nässe, Frost und direkten Beanspruchungen (z. B. Befahren mit Fahrzeugen), die o. g. Tragfähigkeit ist daher nur bei einer nicht aufgeweichten oder aufgelockerten Fläche gegeben
- Bei Bauwerken mit höheren baugrundtechnischen Anforderungen (z. B. mehrgeschossige Häuser) sind i. d. R. baugrundtechnische Zusatzmaßnahmen (z. B. Einbau von Trag-/Ausgleichsschichten) erforderlich
- Die unterhalb der Schluffe vorliegenden Sand-/Schluff-Wechsellagerung ist nach erfolgter Verdichtung für einen Geschossbau mit geringen bis mittleren Lasten ausreichend tragfähig und setzungsunempfindlich.

Art und Umfang der erforderlichen gründungstechnischen Maßnahmen können erst nach Vorliegen von Daten zum geplanten Bauprojekt (Art des Bauwerks, aufkommende Lasten, Setzungsempfindlichkeit etc.) abschließend definiert werden. Wir empfehlen daher, nach Vorliegen dieser Daten, eine detaillierte Baugrundbewertung und Gründungsempfehlung durchführen zu lassen. Ggf. sind hierzu weitere Bodenuntersuchungen erforderlich.

7.2 Wasserhaltung, Bemessungswasserstand

Im Rahmen der Untersuchungen wurde bis 3,0 m u. GOK bzw. bis ca. 87,5 m ü. NN kein Grundwasser angetroffen. Saisonal sind ggf. noch höhere Grundwasserstände möglich. Ein Bemessungswasserstand ist gemäß telefonischer Auskunft der zuständigen SGD Süd nicht verfügbar. Nach vorliegenden Daten/Informationen ist Grundwasser ab ca. 87 m ü. NN zu erwarten, sodass – unter Berücksichtigung möglicher Schwankungen - eine permanente Grundwasserhaltung bei Aushubtiefen bis 2,0 m u. GOK voraussichtlich nicht erforderlich sein wird.

7.3 Gebäudeabdichtung

Bei Lage der Gründungssohlen innerhalb der Schluffe kann es in den Arbeitsräumen zum Aufstau von Sickerwasser kommen. Bei Lage von Gebäudeteilen (z. B. Keller) innerhalb der Schluffe bzw. innerhalb der wassergesättigten Bodenzone ist daher eine Abdichtung gemäß DIN 18195-6 erforderlich.

7.4 Böschungen, Baugruben

Bei der Herstellung von Baugruben ist DIN 4124 zu beachten. Bei Aushubarbeiten mit einer Tiefe bis maximal 1,25 m u. GOK kann hiernach senkrecht geböscht werden, wenn die Kurzzeitstandfestigkeit des Bodens gegeben ist.

Bei Aushubarbeiten tiefer 1,25 m u. GOK dürfen die Böschungen bei den angetroffenen Bodenverhältnissen im Bereich der Auffüllungen mit einem Böschungswinkel von max. 45° und im Bereich der mindestens steifen Schluffe von max. 60° im angelegt werden.

Durch den Bauablauf ist dabei sicherzustellen, dass Fahrzeuge bis 12 t Gesamtgewicht einen Abstand von mindestens 1,0 m zur Böschungsoberkante einhalten. Fahrzeuge über 12 t Gesamtgewicht müssen einen Abstand von mind. 2,0 m zur Böschungsoberkante einhalten.

Die Standfestigkeit der Böschungen ist ständig zu beobachten. Sollten während der Erdarbeiten fließende bzw. nicht standfeste Bodenschichten angetroffen werden, so sind die Böschungen den erdstatischen Erfordernissen entsprechend anzupassen. In Zweifelsfalle ist der Baugrundgutachter erneut rechtzeitig einzuschalten.

Die Böschungen der Baugruben sollten durch Abdecken mit Baufolie gegen Niederschlag geschützt werden. Das Niederschlagswasser ist in der Baugrube kontrolliert zu sammeln und abzuführen, um ein Durchnässen der Baugrubensohle zu verhindern.

7.5 Allgemeine Hinweise und Empfehlungen

Freigelegte Untergrundplanien sind grundsätzlich gegen Witterungseinflüsse (Niederschlag, Frost usw.) zu schützen.

Bindige Anteile der Auffüllungen und die unterhalb der Auffüllungen anstehenden Schluffe können bei Wasserzutritt stark aufweichen. Diese Eigenschaft wird durch mechanische Beanspruchung (z.B. LKW- oder Baggerverkehr) verstärkt. Wir empfehlen daher, im Rahmen der baubetrieblichen Planung die Anlage von Baustraßen bzw. die Befestigung der Arbeitsplätze von schwerem Gerät, um einem Aufweichen dieser Böden entgegenzuwirken.

Sämtliche baugrundtechnischen Empfehlungen dieses Gutachtens basieren auf den lokalen Aufschlüssen der durchgeführten KRB/DPH und den vorliegenden Angaben zur Baumaßnahme. Sollten von den Annahmen abweichende Gebäudestandorte und/oder -varianten zur Ausführung kommen, sind die lokalen bodenmechanischen Eigenschaften erneut fachgutachterlich zu überprüfen.

Sollten während der Bauarbeiten sich abweichend verhaltende oder weniger tragfähige Baugrundbereiche angetroffen werden, ist der Baugrundgutachter zur Festlegung eventuell notwendiger Anpassungsmaßnahmen erneut und rechtzeitig einzuschalten.

Wir empfehlen, nach Vorliegen der Daten zum geplanten Bauwerk, eine detaillierte Baugrundbewertung und Gründungsempfehlung durchführen zu lassen. Ggf. sind hierzu weitere Bodenuntersuchungen erforderlich.

8 Empfehlungen zur weiteren Vorgehensweise

Im Rahmen der orientierenden umweltrechtlichen Untersuchung wurden innerhalb der Auffüllung erhöhte Gehalte an PAK nachgewiesen, die bezogen auf die Summenparameter PAK₁₁₋₁₆ sowie PAK₁₋₁₆ über dem Prüfwert oPW 3 (nichtsensible Nutzung / Industrie) liegen.

Aufgrund der derzeitigen Überdeckung mit Oberboden ist ein direkter Kontakt Boden-Mensch mit den Auffüllungen nicht möglich. Sollte aber die Bedeckung im Zuge von Baumaßnahme o.ä. entfernt werden, ist der direkte Kontakt durch Bodenaustausch oder Überdeckung mit geeigneten Materialien oder Boden zu unterbinden.

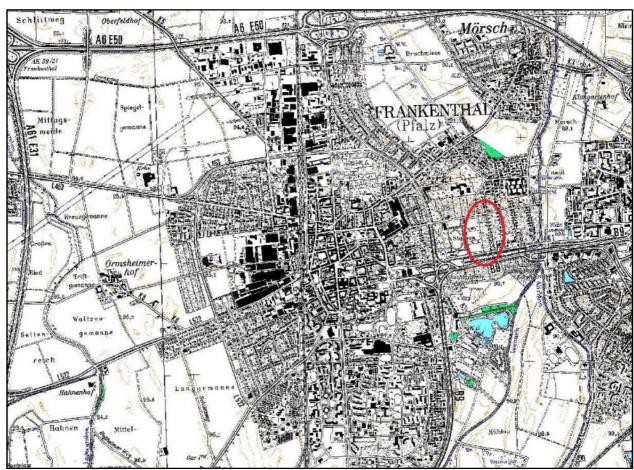
Es wird weiter empfohlen, diejenigen Flächen die einen direkten Kontakt zwischen dem anstehenden Untergrund und dem Menschen ermöglichen, nochmals auf eine Belastung durch PAK zu überprüfen.

Im Rahmen von Erdarbeiten innerhalb der Auffüllungen sollte auf organoleptisch auffälligen Bodenaushub geachtet werden und dieser bis zur Klärung der abfallrechtlichen Relevanz separat gelagert werden.

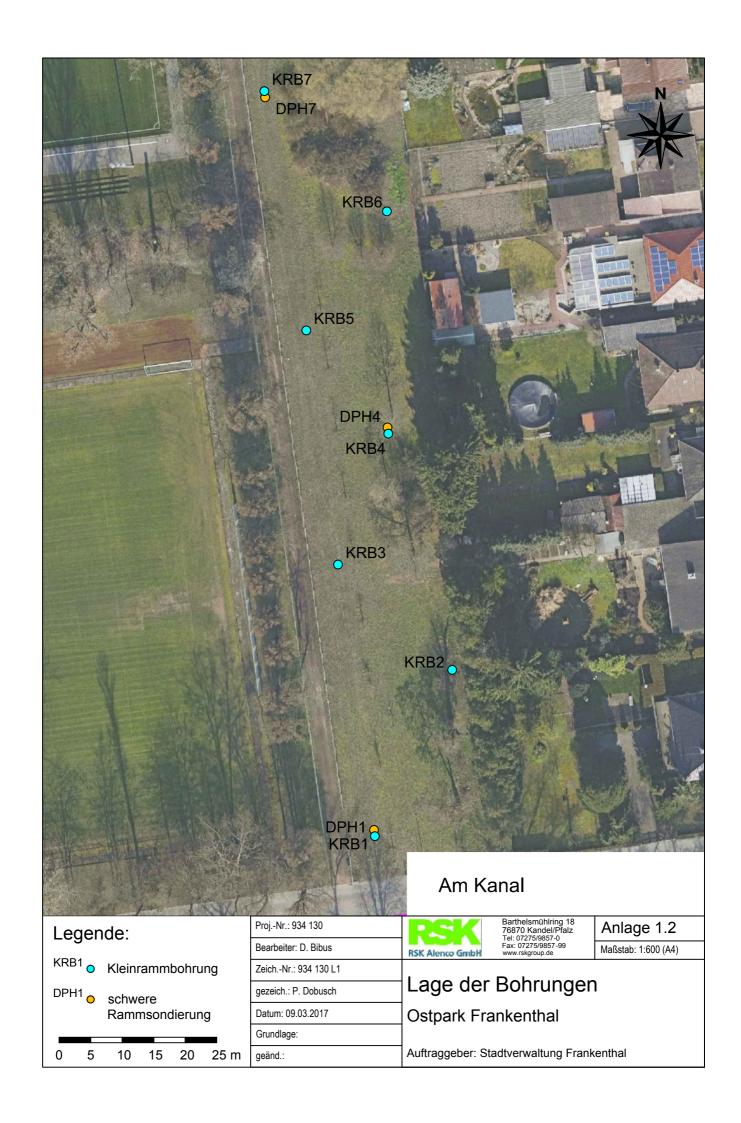
Grundsätzlich ist bei Erdarbeiten mit Mehrkosten für die Entsorgung der belasteten Auffüllungen zu rechnen. Sobald das Vorhaben konkretisiert wird, können Kostenschätzungen zur Ermittlung des baugrundtechnisch bedingten Mehraufwandes aufgestellt werden.

9 Schlussbemerkungen

Sämtliche Empfehlungen dieses Gutachtens basieren auf den lokalen Aufschlüssen der durchgeführten Bohrungen und Rammsondierungen. Die durchgeführten Untersuchungen ersetzen nicht die baugrundtechnische Untersuchung und die abfallrechtliche Einstufung von anfallendem Erdaushub am konkreten Einzelbauvorhaben.

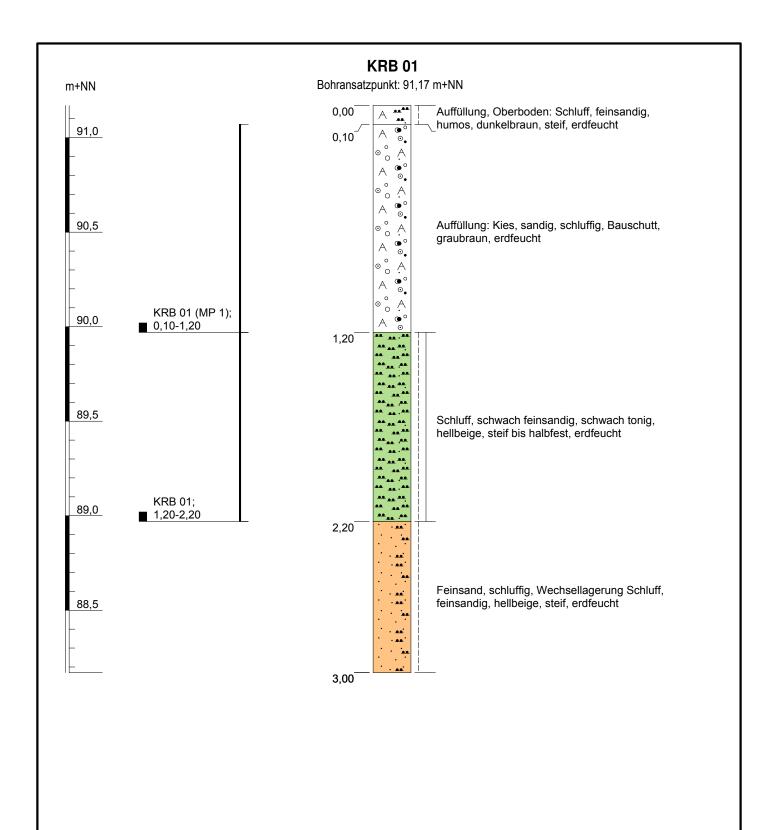

Sollten während der Bauarbeiten sich abweichend verhaltende oder weniger tragfähige Baugrundbereiche angetroffen werden, ist der Baugrundgutachter zur Festlegung eventuell notwendiger Anpassungsmaßnahmen erneut und rechtzeitig einzuschalten.

Anlage 1 Lagepläne


2 Seiten

Anlage 1.1 Übersichtlageplan Anlage 1.2 Lage der Bohrungen

 $\textbf{Anlage 1.1: } \ddot{\textbf{U}} \textbf{bersichtslageplan (Quelle: Landesvermessungsamt Rheinland-Pfalz,}$


Topographische Karte 1:25.000)

Anlage 2 Schichtprofile KRB

7 Seiten

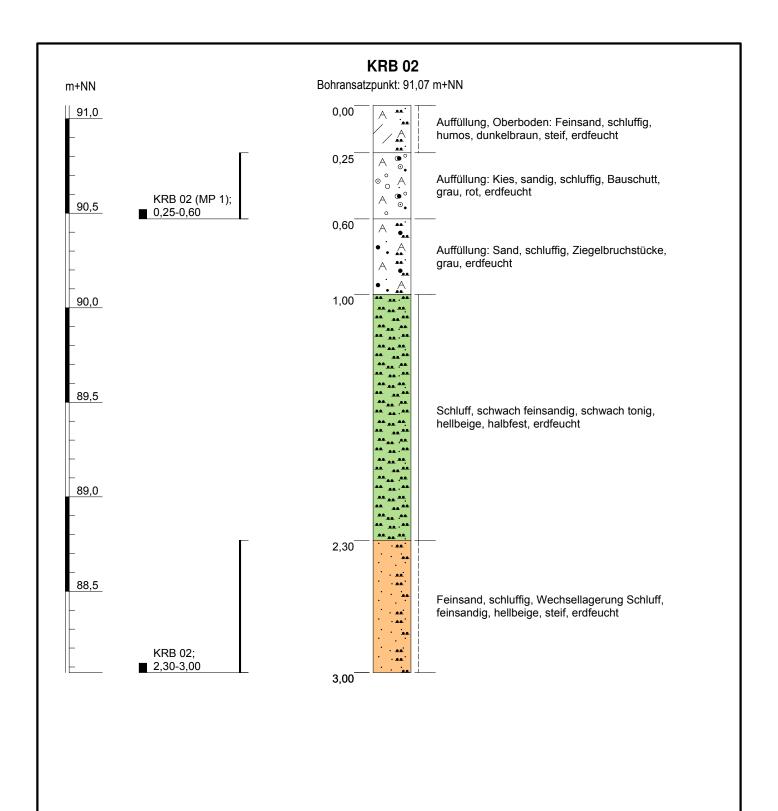
Sondierprofil nach DIN 4023 Datum Name Projekt-Nr.: 170322 Gez. 06.03.2017 C. Metz Bearb. 03.03.2017 M. Hakala, Dipl. Geol. Geän.

Ges.

und Hydrogeol, Erkung Elly-E

WST - GmbH

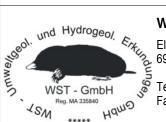
7SM


Blattgröße: DIN A4

WST-GmbH

RSK Alenco GmbH

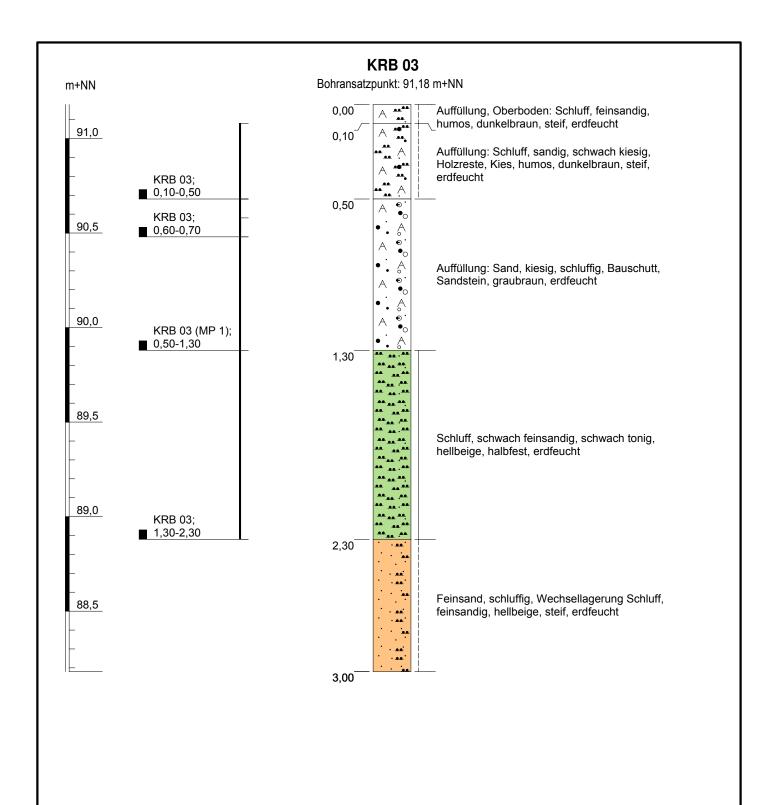
Elly-Beinhorn-Str.6 69124 Eppelheim


Tel.: 06221 - 181780 Fax: 06221 - 181784

Sondierprofil nach DIN 4023 Datum Name Projekt-Nr.: 170322 Gez. 06.03.2017 C. Metz Bearb. 03.03.2017 M. Hakala, Dipl. Geol. Geän.

Blattgröße: DIN A4

Ges.

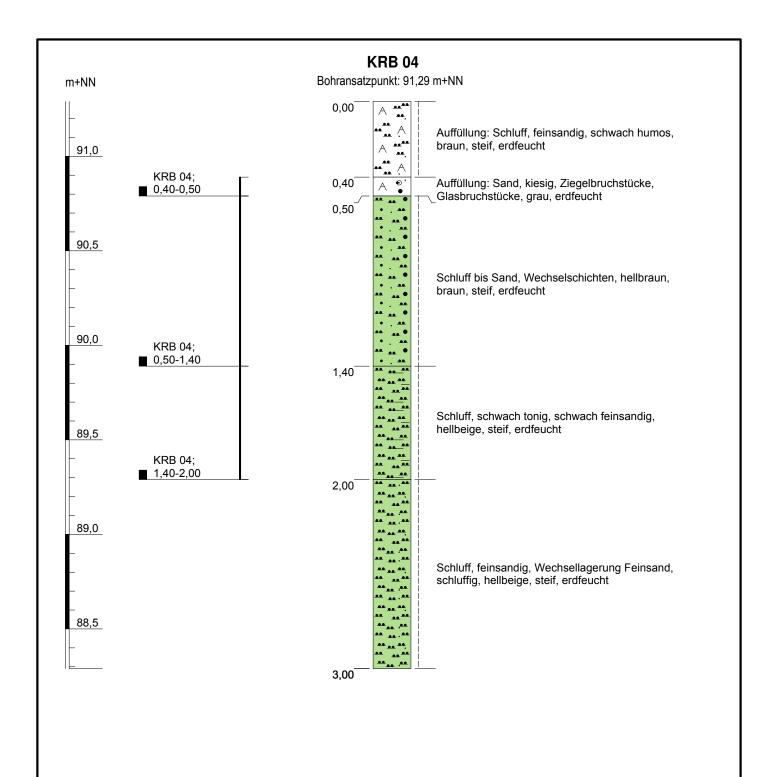


WST-GmbH

RSK Alenco GmbH

Elly-Beinhorn-Str.6 69124 Eppelheim

Tel.: 06221 - 181780 Fax: 06221 - 181784


BV Ostpark FT Sondierprofil nach DIN 4023 Datum Name Projekt-Nr.: 170322 Gez. 06.03.2017 C. Metz Bearb. 03.03.2017 M. Hakala, Dipl. Geol. Maßstab: 1:20 Geän. Ges. Blattgröße: DIN A4

und Hydrogeol. Ertung **WST-GmbH** WST - GmbH 1SM

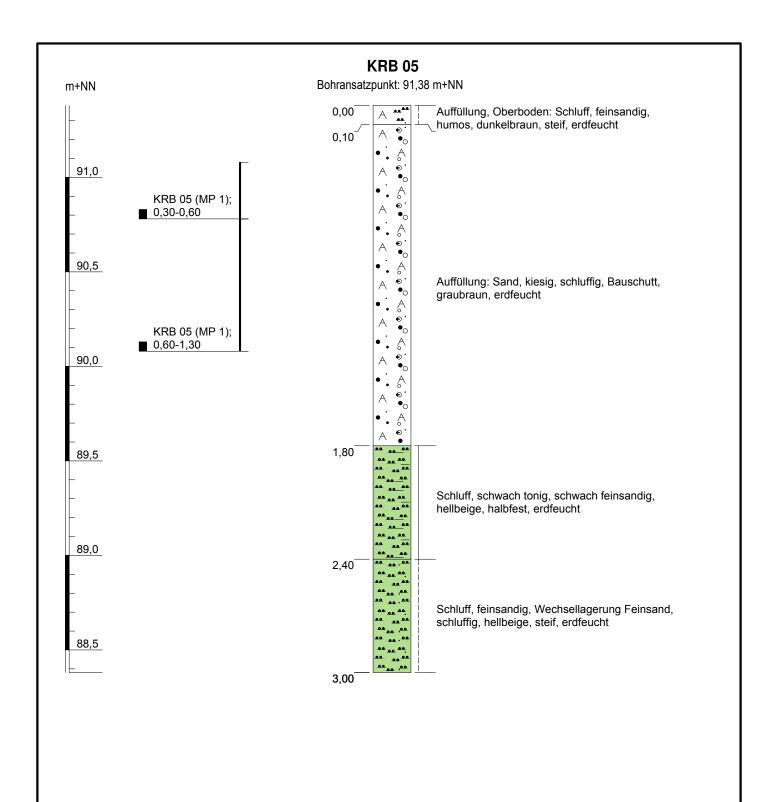
RSK Alenco GmbH

Elly-Beinhorn-Str.6 69124 Eppelheim

Tel.: 06221 - 181780 Fax: 06221 - 181784

BV Ostpark FT Sondierprofil nach DIN 4023 Datum Name Projekt-Nr.: 170322 Gez. 06.03.2017 C. Metz Bearb. 03.03.2017 M. Hakala, Dipl. Geol. Maßstab: 1:20 Geän.

Blattgröße: DIN A4


Ges.

und Hydrogeol Ertung **WST-GmbH** WST - GmbH 78^{M}

RSK Alenco GmbH

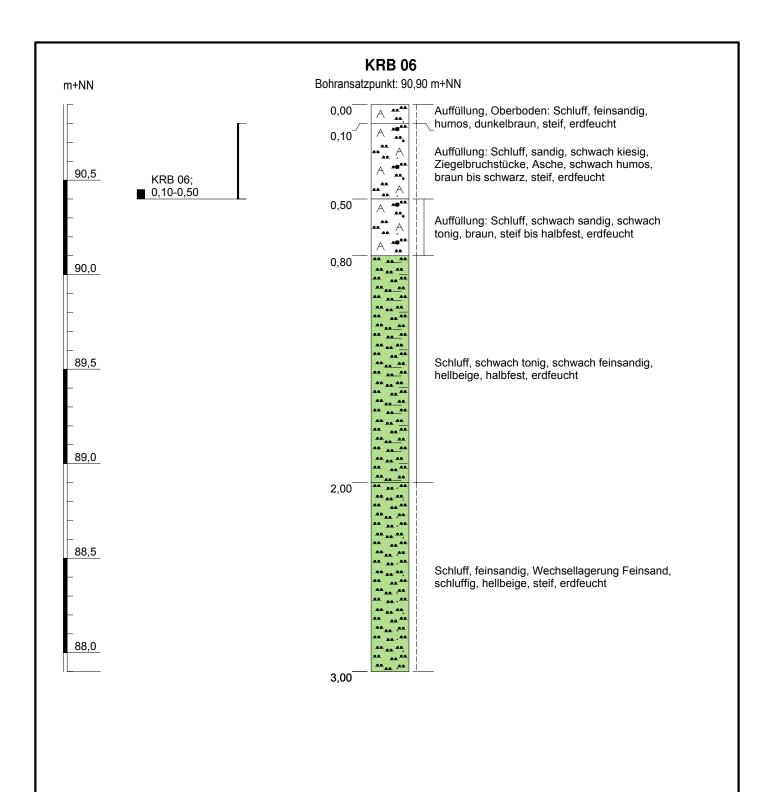
Elly-Beinhorn-Str.6 69124 Eppelheim

Tel.: 06221 - 181780 Fax: 06221 - 181784

Sondierprofil nach DIN 4023 Datum Name Projekt-Nr.: 170322 Gez. 06.03.2017 C. Metz Bearb. 03.03.2017 M. Hakala, Dipl. Geol. Geän.

Blattgröße: DIN A4

Ges.


WST - GmbH Fa

WST-GmbH

RSK Alenco GmbH

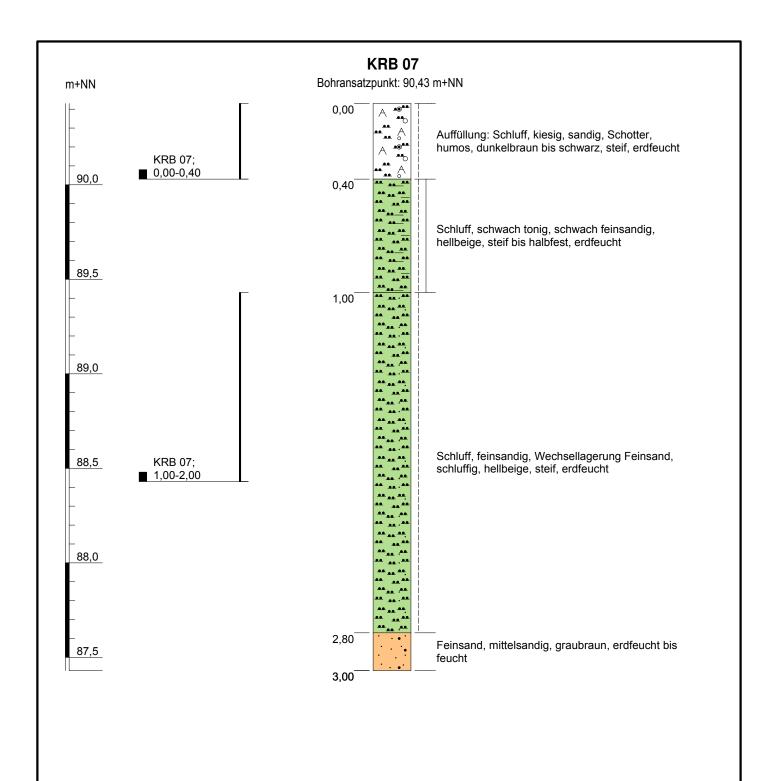
Elly-Beinhorn-Str.6 69124 Eppelheim

Tel.: 06221 - 181780 Fax: 06221 - 181784

BV Ostpark FT Sondierprofil nach DIN 4023 Datum Name Projekt-Nr.: 170322 Gez. 06.03.2017 C. Metz Bearb. 03.03.2017 M. Hakala, Dipl. Geol. Geän.

Blattgröße: DIN A4

Ges.


WST - GmbH Fax Hquid Hquid

WST-GmbH

RSK Alenco GmbH

Elly-Beinhorn-Str.6 69124 Eppelheim

Tel.: 06221 - 181780 Fax: 06221 - 181784

BV Ostpark FT Sondierprofil nach DIN 4023 Datum Name Projekt-Nr.: 170322 Gez. 06.03.2017 C. Metz Bearb. 03.03.2017 M. Hakala, Dipl. Geol. Geän.

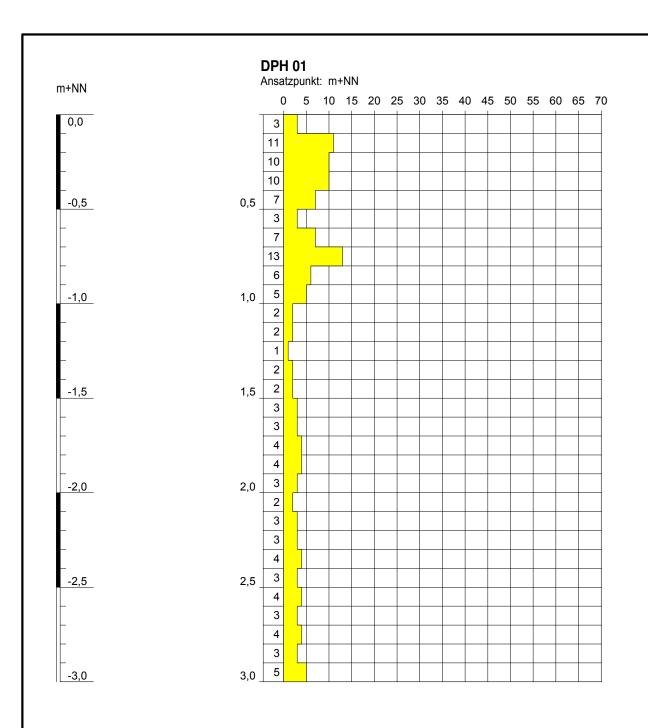
Blattgröße: DIN A4

Ges.

WST - GmbH Reg. MA 335840 HQUID W

WST-GmbH

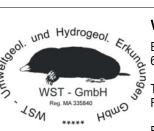
RSK Alenco GmbH


Elly-Beinhorn-Str.6 69124 Eppelheim

Tel.: 06221 - 181780 Fax: 06221 - 181784

Anlage 3 Rammdiagramme

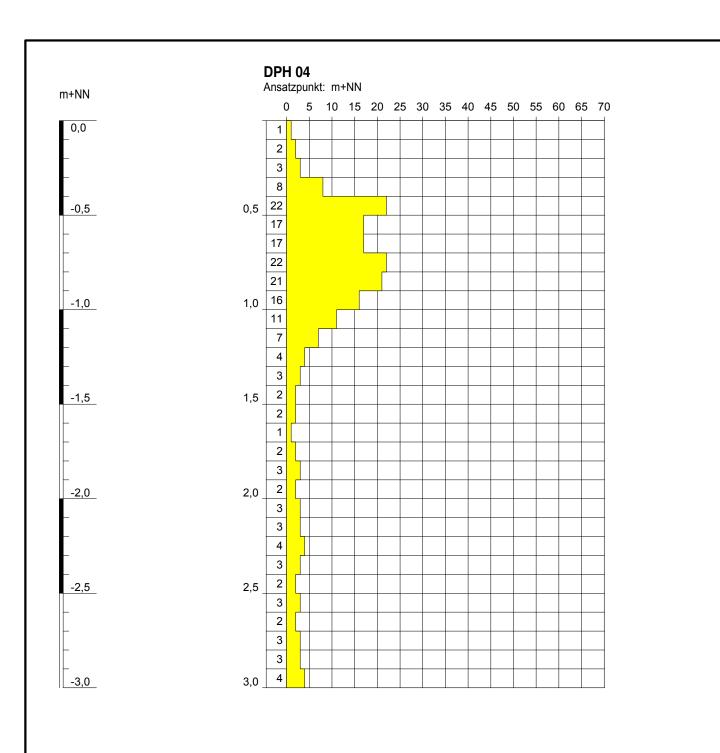
3 Seiten



BV Ostpark FT

Rammdiagramm nach DIN 4094

	Datum	Name	Projekt-Nr.: 170322
Gez.	06.03.2017	C. Metz	
Bearb.	03.03.2017	M. Hakala, Dipl. Geol.	Maßstab: 1:20
Gepr.			
Ges.			Blattgröße: DIN A4


RSK Alenco GmbH

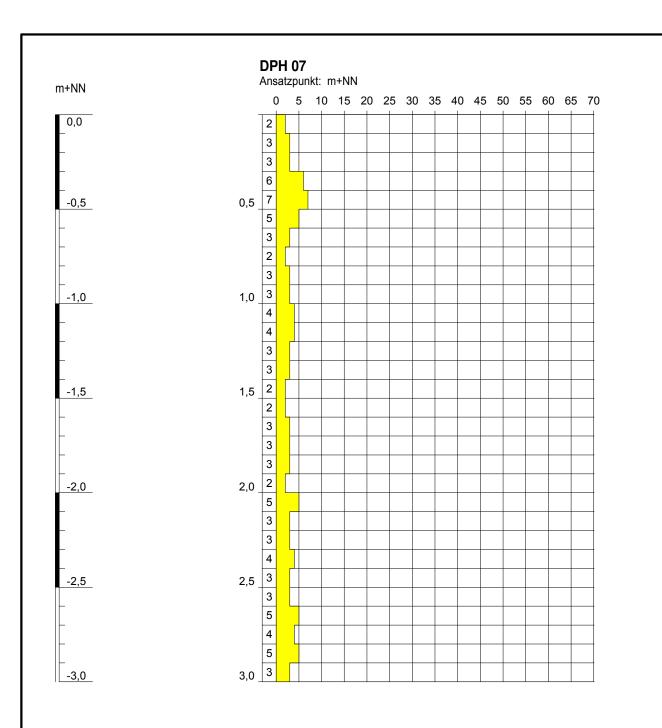
WST-GmbH

Elly-Beinhorn-Str.6 69124 Eppelheim

Tel.: 06221 - 181780 Fax: 06221 - 181784

BV Ostpark FT

Rammdiagramm nach DIN 4094


Gez. 06.03.2017 C. Metz Bearb. 03.03.2017 M. Hakala, Dipl. Geol. Gepr. Maßstab: 1:20		Datum	Name	Projekt-Nr.: 170322
Gepr.	Gez.	06.03.2017	C. Metz	
•	Bearb.	03.03.2017	M. Hakala, Dipl. Geol.	Maßstab: 1:20
Coo Distanção do DIALA	Gepr.			
Ges. Blattgroise: DIN A	Ges.			Blattgröße: DIN A4

RSK Alenco GmbH

WST-GmbH Elly-Beinhorn-Str.6 69124 Eppelheim

Tel.: 06221 - 181780 Fax: 06221 - 181784

BV Ostpark FT

Rammdiagramm nach DIN 4094

	Datum	Name	Projekt-Nr.: 170322
Gez.	06.03.2017	C. Metz	
Bearb.	03.03.2017	M. Hakala, Dipl. Geol.	Maßstab: 1:20
Gepr.			
Ges.			Blattgröße: DIN A4

RSK Alenco GmbH

WST-GmbH

Elly-Beinhorn-Str.6 69124 Eppelheim

Tel.: 06221 - 181780 Fax: 06221 - 181784

Anlage 4 Laborprüfbericht

5 Seiten

görtler analytical services gmbh 🧔 Joh.-Seb.-Bach-Str. 40 🧔 D-85591 Vaterstetten

RSK Alenco GmbH Kandel Barthelsmühlring 18 D-76870 Kandel

Prüfbericht V171124

Projekt 934130 Frankenthal Ostpark

Auftraggeber RSK Alenco GmbH Kandel

Auftragsdatum 13.03.2017

Probenart Feststoff

Probenahme 03.03.2017

Probenehmer D. Bibus

Probeneingang 06.03.2017

Prüfzeitraum 06.03.2017 - 20.03.2017

görtler

analytical/services gmbh

L warshong

Dr. Bruno Schwarzkopf Mitarbeiter QM

Die Prüfbefunde beziehen sich ausschließlich auf die Prüfgegenstände. Die auszugsweise Vervielfältigung des Prüfberichts ist ohne schriftliche Genehmigung der görtler analytical services gmbh nicht zulässig. Untersuchungsstelle ist die görtler analytical services gmbh, D-85591 Vaterstetten.

Wenn nicht anders vereinbart oder fachlich begründet, werden Proben 2 Monate aufbewahrt.

DAKKS

Deutsche
Akkreditierungsstelle
D-PL-14282-01-00

20.03.2017

O Umweltanalytik

Compare Lebensmittelanalytik

Futtermittelanalytik

Rückstandsanalytik

6 RoHS-Analytik

Analytik von Arzneimitteln und pharmazeutischen Produkten

Akkreditiertes Prüflaboratorium DIN EN ISO/IEC 17025:2005

Gegenprobensachverständigen-Prüflabor (PrüfLabV/SAL-BY-G069.02.07)

Zulassung nach dem Arzneimittelgesetz

Untersuchungsstelle nach § 15 TrinkwV: 2001 und § 18 BBodSchG

görtler analytical services gmbh

Johann-Sebastian-Bach-Straße 40 D-85591 Vaterstetten

Telefon +49 8106 2460-0 Telefax +49 8106 2460-60 info@goertler.com www.goertler.com

Geschäftsführung: Giesa Warthemann, Roland Görtler

HRB München 93447 USt.-IdNr. DE 129 360 902 St.Nr. 114/127/60117

Raiffeisenbank Ottobrunn Kto. 664 448 BLZ 701 694 02 IBAN: DE31 7016 9402 0000 6644 48 BIC: GENODEF1HHK

Kreissparkasse

München Starnberg Ebersberg Kto. 274 168 82 BLZ 702 501 50 IBAN: DE39 7025 0150 0027 4168 82 BIC: BYLADEM1KMS

V171124

Feststoff

Probenbezeichnung				MP 1	KRB 6/0,4-0,5
Probenahme durch				D. Bibus	D. Bibus
Probenahme am				03.03.2017	03.03.2017
Probeneingang				06.03.2017	06.03.2017
Anliefergefäß				4 Gläser + 1 PE	Glas
Parameter	Methode	BG	Einheit	V1704067	V1704068
Probenaufbereitung			-	RETSCH	RETSCH
Trockenrückstand (TR)	DIN EN 14346	0,1	%	88,0	83,1
EOX	DIN 38414-S17	0,5	mg/kg Tr	< 0,50	
Glühverlust des TR	DIN EN 15169	0,1	%	2,1	
TOC	DIN EN 13137	0,1	%	0,86	
Kohlenwasserst., GC (C10-C22)	DIN EN 14039, GC/FID	25	mg/kg TR	29	< 25
Kohlenwasserst., GC (C10-C40)	DIN EN 14039, GC/FID	50	mg/kg TR	130	< 50
Extrahierbare lipophile Stoffe	Extraktion gemäß LAGA KW/04 (DEV H56)	0,02	%	0,047	
Cyanide, gesamt	DIN ISO 11262, DIN EN ISO 14403 (D6)	0,1	mg/kg TR	< 0,10	
Leichtflüchtige aromatische Kohlenwasserstoffe (AKW):					
Benzol	HLUG HB, Bd. 7, Teil 4, Extr. m. MetOH, GC/MS	0,1	mg/kg TR	< 0,10	
Toluol	HLUG HB, Bd. 7, Teil 4, Extr. m. MetOH, GC/MS	0,1	mg/kg TR	< 0,10	
Ethylbenzol	HLUG HB, Bd. 7, Teil 4, Extr. m. MetOH, GC/MS	0,1	mg/kg TR	< 0,10	
Xylole (Summe m, p)	HLUG HB, Bd. 7, Teil 4, Extr. m. MetOH, GC/MS	0,1	mg/kg TR	< 0,10	
o-Xylol	HLUG HB, Bd. 7, Teil 4, Extr. m. MetOH, GC/MS	0,1	mg/kg TR	< 0,10	
Styrol	HLUG HB, Bd. 7, Teil 4, Extr. m. MetOH, GC/MS	0,1	mg/kg TR	< 0,10	
iso-Propylbenzol	HLUG HB, Bd. 7, Teil 4, Extr. m. MetOH, GC/MS HLUG HB, Bd. 7, Teil 4,	0,1	mg/kg TR	< 0,10	
1,3,5-Trimethylbenzol	Extr. m. MetOH, GC/MS HLUG HB, Bd. 7, Teil 4,	0,1	mg/kg TR	< 0,10	
Summe AKW Leichtflüchtige halogenierte	Extr. m. MetOH, GC/MS		mg/kg TR	n.n.	
Kohlenwasserstoffe (LHKW):					
Dichlormethan	HLUG HB, Bd. 7, Teil 4, Extr. m. MetOH, GC/MS	0,1	mg/kg TR	< 0,10	
cis-1,2-Dichlorethen	HLUG HB, Bd. 7, Teil 4, Extr. m. MetOH, GC/MS	0,04	mg/kg TR	< 0,040	
Trichlormethan	HLUG HB, Bd. 7, Teil 4, Extr. m. MetOH, GC/MS	0,04	mg/kg TR	< 0,040	
1,1,1-Trichlorethan	HLUG HB, Bd. 7, Teil 4, Extr. m. MetOH, GC/MS	0,04	mg/kg TR	< 0,040	
Tetrachlormethan	HLUG HB, Bd. 7, Teil 4, Extr. m. MetOH, GC/MS	0,04	mg/kg TR	< 0,040	

Gortler® analytical services

Feststoff

Probenbezeichnung				MP 1	KRB 6/0,4-0,5
Probenahme durch				D. Bibus	D. Bibus
Probenahme am				03.03.2017	03.03.2017
Probeneingang				06.03.2017	06.03.2017
Anliefergefäß				4 Gläser + 1 PE	Glas
Parameter	Methode	BG	Einheit	V1704067	V1704068
Trichlorethen	HLUG HB, Bd. 7, Teil 4, Extr. m. MetOH, GC/MS	0,04	mg/kg TR	< 0,040	
Tetrachlorethen	HLUG HB, Bd. 7, Teil 4, Extr. m. MetOH, GC/MS	0,04	mg/kg TR	< 0,040	
Bromoform	HLUG HB, Bd. 7, Teil 4, Extr. m. MetOH, GC/MS	0,1	mg/kg TR	< 0,10	
Summe LHKW	HLUG HB, Bd. 7, Teil 4, Extr. m. MetOH, GC/MS		mg/kg TR	n.n.	
Polycyclische aromatische Kohlenwasserstoffe (PAK):					
Naphthalin	DIN ISO 18287, GC-MS	0,01	mg/kg TR	0,04	0,01
Acenaphthen	DIN ISO 18287, GC-MS	0,01	mg/kg TR	0,05	0,03
Acenaphthylen	DIN ISO 18287, GC-MS	0,01	mg/kg TR	0,36	0,02
Fluoren	DIN ISO 18287, GC-MS	0,01	mg/kg TR	0,16	0,03
Phenanthren	DIN ISO 18287, GC-MS	0,01	mg/kg TR	2,1	0,53
Anthracen	DIN ISO 18287, GC-MS	0,01	mg/kg TR	1,5	0,23
Fluoranthen	DIN ISO 18287, GC-MS	0,01	mg/kg TR	5,8	0,72
Pyren	DIN ISO 18287, GC-MS	0,01	mg/kg TR	4,6	0,58
Benzo(a)anthracen	DIN ISO 18287, GC-MS	0,01	mg/kg TR	4,4	0,45
Chrysen	DIN ISO 18287, GC-MS	0,01	mg/kg TR	3,4	0,33
Benzo(b)fluoranthen	DIN ISO 18287, GC-MS	0,01	mg/kg TR	4,9	0,52
Benzo(k)fluoranthen	DIN ISO 18287, GC-MS	0,01	mg/kg TR	1,8	0,19
Benzo(a)pyren	DIN ISO 18287, GC-MS	0,01	mg/kg TR	3,4	0,37
Dibenzo(a,h)anthracen	DIN ISO 18287, GC-MS	0,01	mg/kg TR	0,55	0,05
Benzo(g,h,i)perylen	DIN ISO 18287, GC-MS	0,01	mg/kg TR	1,9	0,23
Indeno(1,2,3-cd)pyren	DIN ISO 18287, GC-MS	0,01	mg/kg TR	1,7	0,23
Summe PAK (EPA)	DIN ISO 18287, GC-MS		mg/kg TR	37	4,5
PCB 28	DIN EN 15308	0,002	mg/kg TR	< 0,0020	
PCB 52	DIN EN 15308	0,002	mg/kg TR	< 0,0020	
PCB 101	DIN EN 15308	0,002	mg/kg TR	< 0,0020	
PCB 118	DIN EN 15308	0,002	mg/kg TR	< 0,0020	
PCB 138	DIN EN 15308	0,002	mg/kg TR	< 0,0020	
PCB 153	DIN EN 15308	0,002	mg/kg TR	< 0,0020	
PCB 180	DIN EN 15308	0,002	mg/kg TR	< 0,0020	
Summe PCB (7)	DIN EN 15308		mg/kg TR	n.n.	
Metalle:					
Königswasseraufschluss	DIN EN 13657				
Arsen	DIN EN ISO 17294-2 (E29), ICP-MS	1	mg/kg TR	7,1	8,9
Blei	DIN EN ISO 17294-2 (E29), ICP-MS	3	mg/kg TR	92	30
Cadmium	DIN EN ISO 17294-2 (E29), ICP-MS	0,3	mg/kg TR	0,66	< 0,30

Prüfbericht 20.03.2017

V171124

Feststoff

Probenbezeichnung				MP 1	KRB 6/0,4-0,5
Probenahme durch				D. Bibus	D. Bibus
Probenahme am				03.03.2017	03.03.2017
Probeneingang				06.03.2017	06.03.2017
Anliefergefäß				4 Gläser + 1 PE	Glas
Parameter	Methode	BG	Einheit	V1704067	V1704068
Chrom, gesamt	DIN EN ISO 17294-2 (E29), ICP-MS	2	mg/kg TR	23	32
Kupfer	DIN EN ISO 17294-2 (E29), ICP-MS	2	mg/kg TR	80	21
Nickel	DIN EN ISO 17294-2 (E29), ICP-MS	2	mg/kg TR	21	27
Quecksilber	DIN EN ISO 17294-2 (E29), ICP-MS	0,1	mg/kg TR	< 0,10	< 0,10
Thallium	DIN EN ISO 17294-2 (E29), ICP-MS	0,5	mg/kg TR	< 0,50	< 0,50
Zink	DIN EN ISO 17294-2 (E29), ICP-MS	2	mg/kg TR	240	78

Prüfbericht 20.03.2017

V171124

Eluat

Probenbezeichnung				MP 1
Probenahme durch				D. Bibus
Probenahme am				03.03.2017
Probeneingang				06.03.2017
Anliefergefäß				4 Gläser + 1 PE
Parameter	Methode	BG	Einheit	V1704067
Eluatherstellung	DIN EN 12457-4		-	RETSCH
el. Leitfähigkeit (25 °C)	DIN EN 27888 (C8), elektrometrisch	0,1	μS/cm	69
pH-Wert (20 °C)	DIN 38404-C5, elektrometrisch		-	9,2
Chlorid	DIN EN ISO 10304-1 (D20)	0,5	mg/L	0,62
Sulfat	DIN EN ISO 10304-1 (D20)	0,5	mg/L	2,4
Cyanide, gesamt	DIN EN ISO 14403 (D6)	5	μg/L	< 5,0
Phenolindex	DIN EN ISO 14402	10	μg/L	< 10
Metalle:				
Arsen	DIN EN ISO 17294-2 (E29), ICP-MS	5	μg/L	12
Blei	DIN EN ISO 17294-2 (E29), ICP-MS	1	μg/L	23
Cadmium	DIN EN ISO 17294-2 (E29), ICP-MS	1	μg/L	< 1,0
Chrom, gesamt	DIN EN ISO 17294-2 (E29), ICP-MS	2	μg/L	10
Kupfer	DIN EN ISO 17294-2 (E29), ICP-MS	2	μg/L	15
Nickel	DIN EN ISO 17294-2 (E29), ICP-MS	3	μg/L	6,1
Quecksilber	DIN EN ISO 17852	0,2	μg/L	< 0,20
Thallium	DIN EN ISO 17294-2 (E29), ICP-MS	1	μg/L	< 1,0
Zink	DIN EN ISO 17294-2 (E29), ICP-MS	1	μg/L	61

Legende

Komponenten unter der Bestimmungsgrenze (BG) wurden bei der Summenbildung nicht berücksichtigt (Summen gerundet) n.n. = nicht nachweisbar; n.b. = nicht beauftragt

Retsch = Befunde aus der gebrochenen Originalprobe (Probenaufbereitung mit Backenbrecher RETSCH)
Fraktion = Befunde aus der Fraktion < 2 mm

Frakt. < 22,4 = Befunde aus der gebrochenen Fraktion < 22,4 mm bzw. Eluatansatz aus der Fraktion < 22,4 mm grob gebrochen = Eluatansatz aus der grob gebrochenen Originalprobe
Originalprobe = Befunde bzw. Eluatansatz aus der Originalprobe
zerkleinert = Befunde bzw. Eluatansatz aus der zerkleinerten Originalprobe

gemahlen = Befunde aus der gemahlenen Originalprobe

Bericht

orientierende Boden- und Baugrunduntersuchung Kita Ostpark Frankenthal

Projekt Nr. 931817 Bericht-Nr. 931817.G01 20.12.2018

Für:

Stadtverwaltung Frankenthal Bereich Planen und Bauen

Neumayerring 72 67227 Frankenthal (Pfalz)

Von:

RSK Alenco GmbH

Barthelsmühlring 18, 76870 Kandel / Pfalz Tel. +49 7275 9857 - 0, Fax +49 7275 9857 - 99

Zertifiziert nach ISO 9001:2008, ISO 14001:2004 und OHSAS 18001:2007

Bericht erstellt von:

M. Wäsch

Sachlich geprüft von:

S. Reiss

Inhalt

		Seite
1 1.1 1.2	Einleitung Anlass, Aufgaben und Zielstellung	1
1.3 1.4	Einschränkungen Ergebnisse früherer Untersuchungen	3
2	Standortbeschreibung	4
2.1 2.2	Lage und Umgrenzung des Untersuchungsgebiets	
2.3 2.4	Geologischer und hydrogeologischer Überblick Vornutzung des Untersuchungsgeländes	
3	Durchgeführte Untersuchungen	7
3.1 3.2	Bohrungen, Sondierungen und weitere Aufschlüsse Vermessung	
3.3	Gewinnung von Laborproben	
3.4	Versickerungsversuche	
3.5 3.6	OberflächenmischprobenBodenluftprobenahme	
4	Ergebnisse Bodenuntersuchung und Versickerungsversuche	
4.1	Untergrundaufbau und Grundwasserverhältnisse	
4.2 4.3	Bodenmechanische UntersuchungenVersickerungsversuche	
5	Ergebnisse der Untersuchungen	13
5.1	Analysenergebnisse Bodenuntersuchungen	
5.2	Analysenergebnisse Bodenluftuntersuchungen	
5.3	Kampfmittel	14
6	Bewertungsgrundlage	
6.1	Umweltrechtliche Bewertungsgrundlagen	
6.2 6.3	Abfallrechtliche Bewertungsgrundlagen	
6.4	Bewertungsgrundlagen für VersickerungsversucheBewertungsgrundlage für Bodenluftuntersuchungen	
7	Umwelt- und abfalltechnische Bewertung	
7.1	Bodenschutzrechtliche Bewertung der Auffüllungen und des Anstehenden	
7.2	Bodenschutzrechtliche Bewertung der Oberböden	20

Bericht Orientierende Altlasten- und Baugrunduntersuchung Ostseite des Ostparks Stadtverwaltung Frankenthal

7.3	Wirk	ungspfad Boden-Mensch	.20
7.4	Wirk	ungspfad Boden Grundwasser	.21
7.5		enluft	
7.6	Abfa	Ilrechtliche Bewertung	.21
7.7	Ergä	nzende Bewertung der PAK-Befunde	.22
8	Baut	echnische Beurteilung	.23
8.1	Bode	engruppen, Bodenklassen, Frostsicherheit, Bodenkennwerte	.23
8.2	Erdb	ebenwirkung	.24
8.3	Fros	zone	.24
8.4	Bew	ertung der Versickerungsversuche	.25
9	Baug	grundbewertung	.26
9.1	Allge	meine Baugrundbeurteilung	.26
9.3	_	äudeabdichtung	
9.4	Bösc	hungen, Baugruben	.27
10	Zusa	mmenfassung mit Empfehlungen zur weiteren Vorgehensweise	.29
11	Schl	ussbemerkungen	.30
Tabel	len		
Tabelle	1:	Geländeabschnitte	4
Tabelle	2:	Grundwasserstände in der Umgebung	5
Tabelle	3:	Laborproben	8
Tabelle	4:	Ergebnisse des Versickerungsversuchs	11
Tabelle	5:	Laborergebnisse Bodenuntersuchungen	13
Tabelle	6:	Prüf- bzw. Maßnahmenwerte nach BBodSchV (2004)	15
Tabelle	7:	Orientierende Prüfwerte (oPW) nach Merkblatt ALEX 02	16
Tabelle	8:	Auszug aus der LAGA – Richtlinie	
Tabelle	9:	Prüf- und Maßnahmenschwellenwerte für Bodenluft, LAWA (1994)	
Tabelle	10:	Werte für Bodenluft zur Gefahrenabschätzung nach ALEX 02	
Tabelle	11:	Bautechnische Klassifizierung	
Tabelle	12:	Bodenkennwerte	

Bericht Orientierende Altlasten- und Baugrunduntersuchung Ostseite des Ostparks Stadtverwaltung Frankenthal

Bereich Planen und Bauen, Bericht-Nr. 931817.G01

20.12.2018

Anlagen

Anlage 1 Lagepläne
Anlage 2 Schichtprofile KRB und Schurfe

Anlage 3 Rammdiagramme

Anlage 4 Bestimmung des k_f-Wertes

Anlage 5 Protokolle der Versickerungsversuche

Anlage 6 Bodenluftprobenahmeprotokolle

Anlage 7 Abschätzung der Grundwassergefährdung gemäß ALEX 13

Anlage 8 Laborprüfberichte Anlage 9 Körnungslinien

Anlage 10 Kurzbericht Georadarfreimessung

Abkürzungen

AG Auftraggeber

ALEX Altlasten-Expertengruppe des Landes Rheinland-Pfalz

BBodSchV Bundesbodenschutzverordnung

DPH schwere Rammsondierung

GOK Geländeoberkante

KRB Kleinrammbohrung

KW-GC Mineralölkohlenwasserstoffe (Kettenlänge C₁₀-C₄₀)

LAGA Länderarbeitsgemeinschaft Abfall

m ü. NN Meter über Normalnull

PAK₁₆ Polycyclische Aromatische Kohlenwasserstoffe

(Summe von 16 Einzelsubstanzen)

PAK₁₁₋₁₆ Polycyclische Aromatische Kohlenwasserstoffe

(Summe von 6 Einzelsubstanzen nach ALEX 02)

RKS Rammkernsondierung

RSK Alenco GmbH, früher Alenco Environmental Consult GmbH

TOC Gesamtkohlenstoff (Total Organic Carbon)

1 Einleitung

1.1 Anlass, Aufgaben und Zielstellung

Die Stadt Frankenthal plant, den Grünstreifen an der Ostseite des Ostparks von 67227 Frankenthal einer Nutzung zuzuführen. Auf dem Gelände ist die Errichtung einer Kindertagesstätte in Containerbauweise geplant.

Auf Grundlage der ersten Befunde aus der orientierenden Untersuchung am Südende des Grünstreifens im Frühjahr 2017 (/1/) wurde die RSK Alenco GmbH (Niederlassung Kandel) von der Stadtverwaltung Frankenthal mit der Durchführung einer orientierenden Altlasten- und Baugrunduntersuchung für das weitere Gelände des Grünstreifens sowie der Ausarbeitung des zugehörigen Berichts beauftragt.

Da es aus baugrundtechnischer Sicht sinnvoll ist, den südlichen Teil separat zu bewerten, werden die Ergebnisse der baugrundtechnischen Untersuchung von 2017 hier nicht noch einmal mit aufgeführt und auf den zugehörigen Bericht (/1/) verwiesen. Der vorliegende Bericht umfasst die baugrundtechnischen Befunde des mittleren und des nördlicheren Teilstücks.

Hinsichtlich der umwelttechnischen und abfallrechtlichen Bewertung werden die Ergebnisse aus 2017 hier mit berücksichtigt.

Der Bericht soll – zusammen mit Bericht 934-130-bt01 /1/ für den Südteil - als Grundlage der Entscheidung über die weitere Geländenutzung dienen. Die Ergebnisse der o.g. Untersuchungsmaßnahmen werden im Folgenden dargestellt und bewertet.

1.2 Verwendete Unterlagen

- /1/ Bericht 934130-bt01 zur orientierenden Altlasten- und Baugrunduntersuchung im Ostpark Frankenthal, RSK Alenco GmbH, 19.04.2017
- /2/ Kampfmittelvorerkundung 180718555 Projekt Frankenthal Am Kanal, Stufe 1 und 2, Luftbilddatenbank Dr. Carls, 18.10.2018
- /3/ Geologische Übersichtskarte 1:200.000, CC 7110 Mannheim; Hrsg: Bundesanstalt für Geowissenschaften und Rohstoffe, Hannover 1986
- /4/ Hydrogeologische Kartierung und Grundwasserbewirtschaftung im Rhein-Neckar-Raum – Fortschreibung 1963-1998, UMBW und LUBW RLP
- /5/ Bundesbodenschutzgesetz (BBodSchG, Stand 1998)
- /6/ Bundesbodenschutzverordnung (BBodSchV, Stand 1999)
- /7/ Merkblatt Alex 02, Orientierungswerte für die abfall- und wasserwirtschaftliche Beurteilung, Stand: Februar 2011
- /8/ ALEX Merkblatt 14: Arbeitshilfe Qualitätssicherung; Stand Juli 2002
- /9/ ALEX Infoblatt 24: Anforderungen des § 12 BBodSchV an die Herstellung einer durchwurzelbaren Bodenschicht (DB); Stand Mai 2011
- /10/ ALEX Infoblatt 25: Anforderungen an das Verfüllmaterial unterhalb einer durchwurzelbaren Bodenschicht bei bodenähnlicher Verwendung; Stand Mai 2011
- /11/ ALEX Infoblatt 26: Anforderungen an Anforderungen an die Verwertung von Boden und Bauschutt bei technischen Bauwerken; Stand Mai 2011
- /12/ DWA Regelwerk Arbeitsblatt DWA-A 138 Planung, Bau und Betrieb von Anlagen zur Versickerung von Niederschlagswasser, April 2005;
- /13/ Regenwasserversickerung und Bodenschutz, Bundesverbandes Boden Band 2, 1999;
- /14/ LAWA: Empfehlungen für die Erkundung, Bewertung und Behandlung von Grundwasserschäden, Stand: Januar 1993
- /15/ Kommentar und Leitlinien zu ZTV E StB Zusätzliche Technische Vertragsbedingungen und Richtlinien für Erdarbeiten im Straßenbau, Stand 2009

1.3 Einschränkungen

Der vorliegende Bericht basiert ausschließlich auf dem vorgefundenen Sachverhalt, dient nur der genannten Zielstellung und ist ausschließlich für den Auftraggeber bestimmt. Über die vertraglich vereinbarte Gewährleistung hinaus werden keine ausdrücklichen oder stillschweigenden Garantien hinsichtlich der in diesem Bericht enthaltenen Empfehlungen oder sonstigen von RSK ALENCO erbrachten Leistungen übernommen.

1.4 Ergebnisse früherer Untersuchungen

Zur Erkundung des Untergrundes wurden am 03.03.2017 folgende Bohrungen und Sondierungen durchgeführt (/1/):

7 Kleinrammbohrungen (KRB 1 bis KRB 7)

Bohrverfahren: Kleinrammbohrungen nach DIN EN ISO 22475-1

Bohrdurchmesser: 50 bis 60 mm
Tiefe: bis 3 m unter GOK
Lage der Ansatzpunkte: siehe Anlage 1
Bohrprofile: siehe Anlage 2

• 3 schwere Rammsondierungen (DPH, im Nahbereich der KRB 1, 4 und 7)

Sondierverfahren: Schwere Rammsondierungen (DPH) nach

DIN EN ISO 22476-2

Tiefe: bis 3 m unter GOK Lage der Ansatzpunkte: siehe Anlage 1 Rammdiagramme: siehe Anlage 3

Im 2017 untersuchten Südteil sind geotechnisch gesehen die unterhalb der Auffüllungen ab ca. 1,2 m unter GOK anstehenden Schluffe - unter Berücksichtigung baugrundtechnischer Zusatzmaßnahmen - für die Gründung von Bauteilen geeignet. Bei Erdarbeiten ist mit Mehrkosten insbesondere für die Entsorgung der belasteten Auffüllungen zu rechnen.

Die Auffüllung zeigen im Südteil erhöhte Gehalte an PAK über dem Prüfwert oPW 3 (nichtsensible Nutzung / Industrie) gemäß ALEX 02. Aufgrund der Überdeckung mit Oberboden ist der direkte Kontakt Boden-Mensch mit den Auffüllungen unterbrochen.

Es wurde empfohlen, Flächen die einen direkten Kontakt zwischen dem anstehenden Untergrund und dem Menschen ermöglichen, nochmals auf eine Belastung durch PAK zu überprüfen.

2 Standortbeschreibung

2.1 Lage und Umgrenzung des Untersuchungsgebiets

Die Untersuchungsfläche befindet sich im östlichen Stadtgebiet Frankenthals am Rand der Sportanlagen des Ostparks auf dem Grünstreifen (ca. 332 m Länge und ca. 25 m Breite) mit der Flurstücksnummer 1407/22.

Die Grünfläche liegt zwischen den Straßen "Am Kanal" im Süden und "An der Nachweide" im Norden. Sie grenzt westlich an die Sportplätze des Ostparks mit einem Nord-Süd-verlaufenden Fuß/Radweg und östlich an die Gärten der Straße "Amselweg" (siehe Anlage 1.1).

Das Gelände fällt von Süd nach Norden um ca. einen Meter mit einer Geländehöhe ca. 91 bis 90 m ü. NN. Nennenswerte morphologische Geländestrukturen sind nicht vorhanden, wobei im Gelände auch kleinräumig Höhenunterschiede von einigen Dezimeter (bis einem Meter) festgestellt werden können.

Der Flächenschwerpunkt liegt bei Rechts 34⁵⁴⁶⁶⁸ und Hoch 54⁸⁹⁰⁵⁰ nach Gauß-Krüger bzw. Ost 454607 und Nord 5487294 in Zone 32U nach UTM.

2.2 Geländeabschnitte

Auf Grundlage der Vor-Ort-Befunde lässt sich das Gelände wie in folgender Tabelle 1 zusammengefasst in drei unterschiedlich überprägte Bereiche einteilen:

Tabelle 1: Geländeabschnitte

Abschnitt (Bezeichnung im Lageplan Anlage 1.2))	Lage in der Untersuchungsfläche	charakteristischer Aufbau der Auffüllungen (darunter i.d.R. Schluff und Sand)
südliches Teilstück (Abschnitt 1 S)	von der Straße "Am Kanal" bis etwa 130 m in das Gelände hinein (ca. Südrand 2. Fußball- platz)	Auffüllung bis 0,4 (lokal bis ca. 1,8 m) unter GOK mit bauschutthaltigem Sand und Kies sowie bereichsweise Schluff (vergleiche auch /1/)
mittleres Teilstück (Abschnitt 2 M)	ca. 200 m bis 300 m von der Straße "Am Kanal" aus (ca. Südrand 2. Fußballplatz bis Südrand 3. Fußballplatz)	überprägter Oberboden (vermutlich Auffüllungen) bis ca. 0,4 m unter GOK aus umgelagerten Schluff ohne bodenfremde Bestandteile.
nördliches Teilstück (Abschnitt 3 N)	von der Straße "Nachweideweg" aus etwa 90 m ins Gelände hinein	Auffüllungen aus Schluff aber auch Fremd- bestandteile Ziegelbruchstücke bis ca. 1,2 m unter GOK

2.3 Geologischer und hydrogeologischer Überblick

Der Untergrund des Geländes ist von quartären Hochflutsedimenten auf den Niederterrassen (hier Frankenthaler Terrasse) der Rheinebene geprägt (/3/). Im natürlichen Zustand sind lehmige Sande bzw. sandige Lehme über schluffigen bis lehmigen Sanden und Kiesen des Oberen Kieslagers (OKL) zu erwarten.

Unterhalb der meist geringmächtigen Auffüllungen folgen in der Regel als natürlicher Untergrund bis ca. 1,5 - 2,5 m unter GOK (ca. 89 m ü. NN) feinsandige Schluffe. Im nördlichen Teilstück fehlen abweichend davon die feinsandigen Schluffe, da hier Auffüllungen bis 89 m ü. NN vorliegen und eher tonige Schluffe anzutreffen sind, welche dann auch bis ca. 87,5 m ü. NN reichen. Möglicherweise liegt hier eine überschüttete ehemalige Rinnenstruktur vor, sodass der Schluff-Horizont nach unten verlagert erscheint.

Unterhalb der Schluffe finden sich im gesamten Gelände Sande (Fein- bis Grobsande) bzw. Wechsellagerungen aus Schluffen und Sanden.

Gemäß der hydrogeologischen Kartierung ist das Grundwasser zwischen 3-4 m unter GOK zu erwarten /4/. Während der Geländearbeiten wurde 2017 im Bereich der südlichen Untersuchungsfläche kein freies Grundwasser angetroffen, wobei evtl. in einem Aufschluss (KRB 07) bei ca. 87,5 m ü. NN der Übergang zwischen gesättigter und ungesättigter Zone erreicht wurde.

Bei den Arbeiten im Oktober 2018 war in KRB 08 ein Grundwasserstand von ca. 3,5 m unter GOK (ca. 87 m ü. NN) messbar. Bei den meisten anderen Aufschlüssen war in dieser Tiefe ein Übergang von feuchten zu nassen Bodenverhältnissen festzustellen. Die Mittel- und Grobsandhorizonte bei KRB 13 und 14 sind wahrscheinlich schon dem gesättigten Bereich zuzuordnen.

Die in der weiteren Umgebung der Untersuchungsfläche liegenden Grundwassermessstellen zeigten zwischen Januar 2016 bis November 2018 die in folgender Tabelle 2 zusammengefassten Grundwasserstände. Diese decken sich mit den Vor-Ort-Befunden:

Tabelle 2: Grundwasserstände in der Umgebung

Messstelle	Lage	gemittelter Grundwasserstand (Einzelwert)
2391169700	ca. 900 nordöstlich	ca. 87,3 m ü. NN (86,97 m ü. NN am 29.10.2018)
2391258700	ca. 1.000 m west-nordwestlich	ca. 88,4 m ü. NN (88,28 m ü. NN am 29.10.2018)
2391256500	ca. 1.000 m südöstlich	ca. 87,9 m ü. NN (87,77 m ü. NN am 25.10.2018)

Quelle: www.geoportal-wasser.rlp.de (letzter Zugriff 03.12.2018)

Die Grundwasserfließrichtung weist entsprechend der hydrogeologischen Kartierung in Richtung Ost-Nordost.

Das Untersuchungsgebiet liegt innerhalb des per Rechtsverordnung festgelegten, gesetzlichen Überschwemmungsgebiets des Rheins.

Ca. 500 m östlich der Untersuchungsfläche fließt die lokale Vorflut Isenach in nördlicher Richtung ab. Es ist ferner anzunehmen, dass die lokalen Grundwasserverhältnisse durch den ehemaligen Frankenthaler Kanal mit beeinflusst werden. Dieser Kanal verlief parallel der Straße "Am Kanal" und verband den ehemaligen Frankenthaler Hafen (etwa 800 m westlich des Untersuchungsgebiets) mit dem Rhein. Regional wird das Abflussregime aber vom Rhein beherrscht.

2.4 Vornutzung des Untersuchungsgeländes

Durch die Nähe zum Ende des 18. Jahrhunderts gebauten und bis 1945 genutzten Frankenthaler Kanals ist anzunehmen, dass das Gelände zumindest temporär überschwemmt wurde und dabei Feinsedimente abgelagert wurden. Der Grünstreifen wurde im Zuge der Errichtung der Sportanlagen Ostpark sowie der gleichnamigen Wohnsiedlung in den 1930er Jahren angelegt und ist seitdem nicht bebaut gewesen. Die Auffüllungen, insbesondere die Auffüllungen am Südende, könnten mit den dort befindlichen Luftabwehrstellungen zusammenhängen und deuten auf eine Überprägung nach 1945 hin.

3 Durchgeführte Untersuchungen

3.1 Bohrungen, Sondierungen und weitere Aufschlüsse

Am 24.bis 26.10.2018 wurden folgende Aufschlüsse durchgeführt:

• 8 Kleinrammbohrungen (KRB 8 bis KRB 15)

Bohrverfahren: Kleinrammbohrungen nach DIN EN ISO 22475-1

Bohrdurchmesser: 50 bis 60 mm

Tiefe: meist bis 3 m, einzelne bis 5 m unter GOK

Lage der Ansatzpunkte: siehe Anlage 1 Bohrprofile: siehe Anlage 2

• 3 schwere Rammsondierungen (DPH, im Nahbereich der KRB 10, 12 und 14)

Sondierverfahren: Schwere Rammsondierungen (DPH) nach

DIN EN ISO 22476-2

Tiefe: bis 3 m unter GOK
Lage der Ansatzpunkte: siehe Anlage 1
Rammdiagramme: siehe Anlage 3

• 3 Schürfe (Schurf 1 bis 8)

Aufschlussverfahren: Baggerschurf

Tiefe: bis 2 m unter GOK
Lage der Ansatzpunkte: siehe Anlage 1
Schurfprofil: siehe Anlage 3

3 Aufschlüsse für Versickerungsversuche (VV 1 bis 3)

Aufschlussverfahren: Kleinrammbohrungen nach DIN EN ISO 22475-1

bzw. Baggerschurf bei VV 1

Tiefe: 2 m unter GOK Lage der Ansatzpunkte: siehe Anlage 1 Rammdiagramme: siehe Anlage 3 2 Bodenluftprobenahmen (KRB 9 und 13)

Aufschlussverfahren: Kleinrammbohrungen nach DIN EN ISO 22475-1 mit

Ausbau zu temporärer Bodenluftprobenahmestelle

Ausbautiefe: 3 m unter GOK Lage der Ansatzpunkte: siehe Anlage 1 Rammdiagramme: siehe Anlage 3

Der im Rahmen der Bohrarbeiten angetroffene lithologische Aufbau des Untergrundes wurde nach DIN EN ISO 14688 angesprochen und unter organoleptischen (optischen und geruchlichen) Gesichtspunkten begutachtet. Die baugrundtechnische Probennahme erfolgte schichtweise unter Berücksichtigung der Ergebnisse der lithologischen und organoleptischen Bodenansprache.

3.2 Vermessung

Die Aufschlüsse wurden nach Abschluss der Arbeiten nach Lage und Höhe eingemessen. Die Höhen der jeweiligen Ansatzpunkte sind in der Anlage 2 verzeichnet.

3.3 Gewinnung von Laborproben

Entnommene Bodenproben wurden in luftdicht schließende Gefäße abgepackt und dem beauftragten Labor zur Untersuchung überstellt oder als Rückstellproben eingelagert.

Aus ausgewählten Proben der Aufschlüsse wurden repräsentative Mischproben gebildet oder Einzelproben für die Laboruntersuchung ausgewählt. Einen Überblick über die Zusammenstellung der Laborproben gibt folgende Tabelle 3:

Tabelle 3: Laborproben

Probenbezeichnung	enthaltene Einzelpro- ben	Bodenzone/ Horizont	untersuchte Parameter
MP 1 (2017)	KRB 01 0,1-1,2 KRB 02 0,25-0,6 KRB 03 0,5-1,3	Auffüllung	LAGA Boden (2004) Feststoff und Eluat
KRB 06 0,1-0,5 (2017)		Auffüllung	Schwermetalle, KW, PAK
MP Schluff Schurf 4-7 0,3-1,5	Schurf 4 0,5-1,5 Schurf 5 0,3-1,4 Schurf 6 0,6-1,4 Schurf 7 0,3-1,3	anstehender Schluff	Schwermetalle, KW, PCB, PAK
MP Auffüllung Schurf 8 0,1-0,9		Auffüllung	LAGA Boden (2004) Feststoff und Eluat
MP Auffüllung Schurf 4-7 0,05-0,6	Schurf 4 0,05-0,5 Schurf 5 0,1-0,3 Schurf 6 0,05-0,6 Schurf 7 0,05-0,3	Auffüllung	LAGA Boden (2004) Feststoff und Eluat
MP Oberboden 1 S		Oberboden	Schwermetalle, KW, PCB
MP Oberboden 2 M		Oberboden	Schwermetalle, KW, PCB
MP Oberboden 3 N		Oberboden	Schwermetalle, KW, PCB

Anmerkungen: $KW = Kohlenwasserstoffe C_{10}-C_{40}$, PCB = Polychlorierte Biphenyle, PAK = Polycyclische Aromatische Kohlenwasserstoffe

3.4 Versickerungsversuche

Zur Überprüfung der Eignung der am Standort anstehenden Böden für eine Niederschlagswasserversickerung wurden an 3 Positionen der Untersuchungsfläche (VV1 bis VV 3, Lage siehe Anlage 1) Versickerungsversuche vorgesehen. Versuch VV 2 und 3 konnten in eigens durchgeführten Aufschlüssen durchgeführt werden. Für Versuch VV 1 wurde das Messrohr – nachdem an der geplanten Aufschlussstelle keine Bohrung abgeteuft werden konnte (vgl. VV 1 bis VV 1d in Anlage 2) - in den Schurf 2 eingebaut.

Da bis zu einer Tiefe von 1,6 m u. GOK (VV 2) bzw. 1,8 m u. GOK (VV 3) gering wasserdurchlässige Schluffe angetroffen wurden, wurden die Versuche jeweils an der bei 2 m u. GOK liegenden Bohrlochsohle, in den dort anstehenden schwach schluffigen Feinsanden, ausgeführt. Zur technischen Durchführung und rechnerischen Bestimmung des Durchlässigkeitsbeiwertes vergleiche Anlage 4.

3.5 Oberflächenmischproben

Zur orientierenden umweltrechtlichen Untersuchung der Oberböden hinsichtlich des Wirkungspfades Boden und Mensch wurden drei Oberflächenmischproben gewonnen, indem händisch der Oberboden bis 0,1 m unter GOK beprobt und das Material zu Mischproben vereint wurde. Laboranalytisch wurden die Verdachtsparameter PAK₁₆, PCB₆ sowie Schwermetalle gemäß der BBodSchV (2004) untersucht. Die Analyse erfolgte gemäß BBodSchV an der Bodenfraktion < 2 mm. Der Untersuchungsumfang (Anzahl der Einzelproben und Tiefenlage der Beprobung) wurde in Anlehnung an das Merk- und Informationsblatt ALEX 14 (/8/) sowie der BBodSchV festgelegt. Die Lage der Flächen kann der Anlage 1, Lagepläne entnommen werden.

3.6 Bodenluftprobenahme

Die KRB 9 und 13 wurden bis auf 3 m unter GOK zu temporären Bodenluftentnahmestellen ausgebaut und anschließend eine Bodenluftprobe zur Analyse entnommen. Die Gewinnung der Bodenluftproben erfolgte in Anlehnung an die Handlungsanweisung "Entnahme von Bodenluftproben" der LFU Baden - Württemberg. Hierzu wurden die Messstellen zwischen Bohrung und Bodenluftprobenahme gegen Zutritt von Umgebungsluft verschlossen. Mittels einer regulierbaren Pumpe SKC Aircheck Sampler wurde mit einem Durchfluss von 1.000 ml/min ein definiertes Probenvolumen von 5.000 ml auf Aktivkohleröhrchen (SKS Anasorb CSC) gezogen. Die Aktivkohleröhrchen wurden nach der Probennahme verschlossen und zur Analyse in ein anerkanntes Labor verbracht. Die Analyse erfolgte orientierend bei KRB 9 auf LHKW und BTEX. Nach der Probenahme wurde die Bodenluft in den Bohrlöchern mittels eines Ansyco Deponiegasmonitors (BM 2000) auf CO₂, O₂, H₂S und CH₄ überprüft.

4 Ergebnisse Bodenuntersuchung und Versickerungsversuche

Im Folgenden werden die Ergebnisse der Untersuchungen für den mittleren und den nördlicheren Teilbereich des Grünstreifens vorgestellt. Da das 2017 untersuchte südlichere Teilstück baugrundtechnisch anders zu bewerten ist, wird hier auf die Wiederholung der baugrundtechnischen Einstufung und Bewertung verzichtet)und auf den entsprechenden Bericht (/1/) verwiesen).

4.1 Untergrundaufbau und Grundwasserverhältnisse

Im Rahmen der durchgeführten Untersuchung wurde das nachfolgend zusammenfassend beschriebene Bodenmaterial angetroffen:

- bis 0,1/0,6 m u. GOK: Auffüllung: Schluff, feinsandig, lokal kiesig, humos,

steif (Oberboden)

- bis 0,3/1,2 m u. GOK Auffüllung:

(überwiegend nur im nördlichen Teil):

,

Auffüllung: überwiegend umgelagerte Schluffe, in KRB 14 und 15 Sand/Schluff m. Bauschutt und Kohleresten, steif-halbfest, Sande erdfeucht

- bis 1,3/2,4 m u. GOK Schluff, feinsandig, tonig; steif – halbfest,

z.T. mit sandigen Horizonten

- bis min. 3,0/5,0 u. GOK: Fein- und Mittelsande, bereichsweise bis max.

3,3 m u. GOK schwach schluffig bis schluffig, erd-

feucht - feucht, ab ca. 3 m nass

Die detaillierte Beschreibung des in den KRB angetroffenen Bodenmaterials sowie die lithologischen Details können den Bohrprofilen in Anlage 2 entnommen werden. Die Rammdiagramme der DPH sind in Anlage 3 dargestellt.

Bei den Arbeiten im Oktober 2018 war in KRB 08 ein Grundwasserstand von ca. 3,5 m unter GOK (ca. 87 m ü. NN) messbar.

Grundsätzlich ist darauf hinzuweisen, dass der oben dargestellte Untergrundaufbau auf den punktförmig ausgeführten Aufschlüssen basiert. Abweichungen hinsichtlich der Zusammensetzung der Böden sowie ihrer Lagerungsdichte zwischen den Untersuchungspunkten können daher - insbesondere innerhalb der Auffüllungen - nicht ausgeschlossen werden.

4.2 Bodenmechanische Untersuchungen

Für die Bestimmung der Kornverteilung wurden an 5 ausgewählten Bodenproben Nasssiebungen bzw. kombinierte Sieb- und Sedimentationsanalysen durchgeführt.

4.3 Versickerungsversuche

In folgender Tabelle 4 sind die berechneten k_f – Werte der Versickerungsversuche dargestellt. Da gegen Ende der Versuche wird eine Teilsättigung des Bodens im Einflussbereich des Versuchs erreicht, sind die Werte als repräsentativer anzusehen. Die Protokolle der Versuchsdurchführung sind in Anlage 5 ersichtlich.

Tabelle 4: Ergebnisse des Versickerungsversuchs

Auf- schluss- punkt	Bodenart	Mittelwert Durchfluss Q [m/s]	Durchlässigkeits- beiwert k _f [m/s]	Durchlässigkeitsbeiwert k _f bei Teilsättigung [m/s]
VV 1 (Schurf 2)	U _{fst'} Schluff, schwach tonig, feinsandig	7,20 * 10 ⁻⁷	3,11 * 10 ⁻⁶	$1,53*10^{-6}$
VV 2	fS _u · Feinsand, schwach schluffig	4,37 * 10 ⁻⁷	1,81 * 10 ⁻⁶	1,46 * 10 ⁻⁶
VV 3	fS _u · Feinsand, schwach schluffig	4,72 * 10 ⁻⁷	1,9 * 10 ⁻⁶	1,42 * 10 ⁻⁶
Mittelwert		$5,43*10^{-7}$	$2,27*10^{-6}$	

Anmerkungen: fett = für die Versickerung relevante Werte

Da bis zu einer Tiefe von 1,6 m u. GOK (VV 2) bzw. 1,8 m u. GOK (VV 3) gering wasserdurchlässige Schluffe angetroffen wurden, wurden die Versuche jeweils an der bei 2 m u. GOK liegenden Bohrlochsohle, in den dort anstehenden schwach schluffigen Feinsanden, ausgeführt. Für die ab ca. 1,6/1,8 m u. GOK anstehenden schluffigen Sande kann ein k_f -Wert von ca. 1,4 x 10^{-6} m/s angesetzt werden.

Wie aus der nachfolgenden Abbildung 1 ersichtlich, liegen die berechneten k_f -Werte damit in dem für die jeweils angetroffene Bodenart zu erwartenden Bereich.

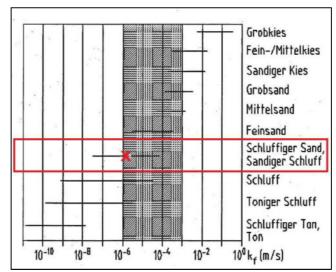


Abbildung 1:Wasserdurchlässigkeitsbeiwerte und entwässerungstechnischer Versickerungsbereich (grau), rot = im Untersuchungsgelände zu erwartende Beiwerte (Quelle: /12/, verändert)

5 Ergebnisse der Untersuchungen

5.1 Analysenergebnisse Bodenuntersuchungen

In der folgenden Tabelle 5 sind die Analysenergebnisse der Bodenproben wiedergegeben. Bei der Untersuchung der Auffüllung nach der Parameterliste der LAGA sind in der Tabelle nur die maßgeblichen Schadstoffparameter aufgeführt. Die zugehörigen Laborprüfberichte sind in Anlage 7 zu finden.

Tabelle 5: Laborergebnisse Bodenuntersuchungen

Probe	KW [mg/kg]	PAK ₁₆ [mg/kg]	PAK ₁₁₋₁₆ [mg/kg]	BaP [mg/kg]	TOC [m-%]	Schwermetalle [mg/kg]	ALEX 02 Prüfwerte	BBodSchV Prüfwerte	Zuordnungswert LAGA M20 Boden
südlicher Teilbereich (Abschr	nitt 1 S)							
MP Oberboden 1 S	n.u.	1,3	0,32	0,09	n.u.	unauffällig	oPW1	Kinderspiel- flächen	(Z0)
MP1 (2017)	130	36,61	14,2	3,4	0,86	unauffällig	> oPW3	Wohngebiet	> Z2
KRB 6 0,1-0,5 (2017)	< 50	4,52	1,59	0,37	n.u.	unauffällig	< oPW3	Kinderspiel- flächen	Z1.2
mittlerer Teilbereich (A	Abschni	tt 2 M)							
MP Oberboden 2 M	n.u.	0,33	0,06	0,02	n.u.	unauffällig	oPW1	Kinderspiel- flächen	(Z0)
MP Auffüllung Schurf 4-7 0,05-0,6	< 50	0,28	0,06	0,02	1,7	unauffällig	oPW1	Kinderspiel- flächen	Z2 ²⁾ / Z0
MP Schluff Schurf 4- 7 0,3-1,5	< 50	n.b.	n.b.	< 0,01	n.u.	unauffällig	oPW1	Kinderspiel- flächen	(Z0)
nördlicher Teilbereich (Abschnitt 3 N)									
MP Oberboden 3 N	n.u.	0,43	0,08	0,03	n.u.	unauffällig	oPW1	Kinderspiel- flächen	(Z0)
MP Auffüllung Schurf 8 0,1-0,9	< 50	0,29	0,07	0,02	1,6	unauffällig	oPW1	Kinderspiel- flächen	Z2 ²⁾ / Z1.2 ¹⁾

Quelle: Laborprüfberichte Görtler Analytical Service, Anmerkungen: oPW = Prüfwert, As = Arsen, Pb = Blei, Cd = Cadmin, Cr = Chrom, Cu = Kupfer, Ni = Nickel, Hg = Quecksilber, Zn = Zink, n.b. = nicht berechenbar, n.u. = nicht untersucht, ¹⁾ Einstufung aufgrund elektrischer Leitfähigkeit, ²⁾ Einstufung aufgrund TOC-Gehalt, (...) keine vollständige Deklarationsuntersuchung, fett = bewertungsrelevante Befunde

Die Mischprobe "MP1" (2017) aus den Auffüllungen der Bohrungen KRB1 bis 5 zeigt erhöhte Gehalte an PAK mit 36,61 mg/kg für PAK₁₆ bzw. 14,2 mg/kg für PAK₁₁₋₁₆. Die Probe "KRB6/0,1-0,5" (2017) ergab für PAK₁₆ einen leicht erhöhten Gehalt von 4,52 mg/kg bzw. 1,59 für PAK₁₁₋₁₆.

Die 2018 untersuchten Proben der Auffüllungen ("MP Auffüllung Schurf 8 0,1-0,9" und "MP Auffüllung Schurf 4-7 0,05-0,6") zeigten für den mittleren und den nördlichen Teil nur geringe Auffälligkeiten aufgrund erhöhter elektrischer Leitfähigkeit während die Verdachtsparameter PAK₁₆ und Schwermetalle unauffällig waren.

Die orientierende Beprobung des Oberboden ergab für die Proben "MP Oberboden 1 S", "MP Oberboden 2 M" und "MP Oberboden 3 N" ebenfalls keine auffällig erhöhten Gehalte für die Verdachtsparameter PAK₁₆ und Schwermetalle.

5.2 Analysenergebnisse Bodenluftuntersuchungen

Die Untersuchung der Bodenluft über den temporären Bodenluftpegel in KRB 9 ergab einen laboranalytischen Nachweis von BTEX mit 3,3 mg/m³ (vor allem Toluol mit 2,4 mg/m³). LHKW waren nicht nachweisbar (vergleiche Anlage 8).

5.3 Kampfmittel

Für einen Teilbereich der Untersuchungsfläche wurde im Rahmen der Kampfmittelvorerkundung eine potentielle Belastung mit Kampfmitteln ermittelt /2/. Für ca. 1/3 des Geländes besteht ein weiterer Erkundungsbedarf bzw. die Notwendigkeit einer kampfmitteltechnischen Begleitung im Zuge von Baumaßnahmen.

6 Bewertungsgrundlage

6.1 Umweltrechtliche Bewertungsgrundlagen

Die auf dem BBodSchG (/5/) aufbauende BBodSchV (/6/) sieht eine nutzungs- und wirkungspfadbezogene Betrachtung von Schutzgütern vor. In der BBodSchV werden die Wirkungspfade Boden-Mensch, Boden-Pflanzen und Boden-Grundwasser betrachtet. Ausgehend vom Ort der Kontamination erfolgt eine Gefährdungsabschätzung für die Schutzgüter Mensch, Pflanzen und Grundwasser. Hierfür stehen sogenannte Prüf- und Maßnahmewerte für verschiedene Nutzungen zur Verfügung.

Des Weiteren stehen zur Bewertung von Boden- und Grundwasserverunreinigungen in Rheinland – Pfalz die Orientierungswerte der Altlasten Expertenliste ALEX Merkblatt ALEX 02 "Orientierungswerte für die abfall- und wasserwirtschaftliche Beurteilung" des Landesamtes für Umweltschutz und Gewerbeaufsicht mit Landesamt für Wasserwirtschaft (Stand 1997) sowie das Merkblätter ALEX 14 "Arbeitshilfe bei der Altlastenbearbeitung" zur Verfügung.

Wirkungspfad Boden - Mensch

Nach der BBodSchV ist der Wirkungspfad Boden – Mensch in verschiedene Nutzungen unterteilt (Kinderspielflächen, Wohngebiete, Park- und Freizeitanlagen, Industrie- und Gewerbegrundstücke). Für den Wirkungspfad Boden-Mensch sind in Abhängigkeit der geplanten Nutzung die relevanten Prüfwerte in Betracht zu ziehen. Zur Überprüfung dieses Wirkungspfads sind orientierend Oberflächenmischproben aus dem Tiefenbereich von 0,0 bis 0,1 m unter GOK zu entnehmen.

In den nachfolgenden Tabellen sind die relevanten Prüfwerte für den Wirkungspfad Boden-Mensch wiedergegeben.

Tabelle 6: Prüf- bzw. Maßnahmenwerte nach BBodSchV (2004), Wirkungspfad Boden Mensch

	PW Kinderspiel- flächen	PW Wohngebiete	PW Park- und Freizeitanlagen	PW Industrie- und Gewerbegebiete
Parameter	[mg/kg]			
Benzo(a)pyren	2	4	10	12
Arsen	25	50	125	140
Chrom	200	400	1.000	1.000
Quecksilber	10	20	50	80
Blei	200	400	1.000	2.000
Cadmium	10	20	50	60
Nickel	70	140	350	900
PCB ₆	0,4	0,8	2	40

Anmerkungen: PW: Prüfwert

Tabelle 7: Orientierende Prüfwerte (oPW) nach Merkblatt ALEX 02, Rheinland-Pfalz Stand Juli 1997; Beurteilungswerte nach Merkblatt ALEX 13, Rheinland-Pfalz Stand Sep. 2001 (Boden)

	oPW1 multifunktio- nale Nutzung bzw. Kinderspielplatz	oPW2 sensible Nutzung bzw. Wohnbebauung	oPW3 nichtsensible Nutzung bzw. Gewer- be/Industriegebiet	Beurteilungs- wert
Parameter	[mg/kg]			
KW/H18	300	600	1.500	1.000
PAK ₁₆	10	20	100	25
PAK ₁₁₋₁₆	0,5	1	5	
Benzo(a)pyren				1
Arsen	40	60	100	60
Chrom	100	200	600	500
Kupfer	100	200	1.000	500
Quecksilber	2	10	20	10
Blei	200	500	1.000	500
Zink	300	600	2.000	1.000
Cadmium	2	10	20	10
Nickel	100	200	500	500
PCB _{gesamt} ¹⁾	0,5	1	5	
PCB ₆				3

Anmerkungen: oPW: orientierende Prüfwerte der Zielebene 1-3; 1) PCB_{gesamt} = PCB₆ x 5

6.2 Abfallrechtliche Bewertungsgrundlagen

Die Prüfung von Aushubmaterial und Baustoffen hinsichtlich der Verwertbarkeit (abfallrechtliche Bewertung) erfolgt auf Grundlage der von der Ländergemeinschaft Abfall (LAGA) vorgegebenen Richtwerte. Für eine Verwertung/Entsorgung sind auszugsweise die Feststoffwerte gemäß LAGA (2004) in Tabelle 8 aufgeführt.

Tabelle 8: Auszug aus der LAGA – Richtlinie : Anforderungen an die stoffliche Verwertung von mineralischen Reststoffen Stand; 05.11.2004

Parameter	Dimension	Z 1	Z 2
EOX	mg/kg	3 ¹⁾	10
Mineralölkohlenwasserstoffe	mg/kg	300 (600) ²⁾	1000 (2000) 2)
Σ PAK ₁₆ n. EPA	mg/kg	3 (9) ³⁾	30
Benzo(a)pyren	mg/kg	0,9	3
Σ PCB ₆	mg/kg	0,15	0,5
Arsen	mg/kg	45	150
Blei	mg/kg	210	700
Cadmium	mg/kg	3	10
Chrom (ges.)	mg/kg	180	600
Kupfer	mg/kg	120	400
Nickel	mg/kg	150	500
Quecksilber	mg/kg	1,5	5
Thallium	mg/kg	2,1	7
Zink	mg/kg	450	1500
Cyanide gesamt	mg/kg	3	10
TOC	Mass%	1,5	5
BTX (AKW)	mg/kg	1	1
LHKW	mg/kg	1	1

Quelle: Mitteilung der LAGA20 "Anforderungen an die stoffliche Verwertung von mineralischen Abfällen, Teil II Technische Regeln, 1.2 Bodenmaterial (TR Boden) " Stand 05.11.2004 Anmerkungen: ¹⁾ Bei Überschreitung ist die Ursache zu prüfen; ²⁾ Die angegebenen Zuordnungswerte gelten für Kohlenwasserstoffverbindungen mit einer Kettenlänge von C10 bis C22. Der Gesamtgehalt, bestimmt nach E DIN EN 14039 C10-C40, darf insgesamt den in Klammern genannten Wert nicht überschreiten; ³⁾ Boden- und Bauschuttmaterial mit Zuordnungswerten >3 mg/kg und ≤ 9 mg/kg darf nur in Gebieten mit hydrogeologisch günstigen Deckschichten eingebaut werden.

Bodenmaterialen, welche gefährliche Stoffe > Z2 nach LAGA enthalten, müssen als gefährlicher Abfall gesondert entsorgt werden (Abfallschlüssel EAK 17 05 03*).

Für eine Wiederverwertung von (Boden)Materialien sind in Rheinland-Pfalz neben der Bundesbodenschutzverordnung BBodSchV (Stand 1999), die ALEX Informationsblätter 24-26 des Landesamtes für Umwelt und Gesundheit (LfU) zu beachten (/9/, /10/, /11/).

6.3 Bewertungsgrundlagen für Versickerungsversuche

Bei der Bewertung der Versickerungsfähigkeit wird auf das Arbeitsblatt DWA-A138 /12/ der Deutschen Vereinigung für Wasserwirtschaft, Abwasser und Abfall als anerkanntes Regelwerk Bezug genommen. Weiterhin kann der Band 2 des Bundesverbandes Boden: "Regenwasserversickerung und Bodenschutz"/13/ herangezogen werden.

Bei der Versickerung von Niederschlagswässern benennt das DWA Regelwerk als versickerungstechnisch geeignete Bereiche k_f –Werte von 1 x 10^{-3} bis 1 x 10^{-6} m/s (s Abbildung 1). Größere aber auch kleinere Durchlässigkeitsbeiwerte sind nicht erwünscht, da bei einem k_f –Wert > 1 x 10^{-3} m/s das zu versickernde Wasser zu schnell und ohne ausreichende chemische und biologische Reinigung durch den durchströmten Boden dem Grundwasser zugeführt wird. Sind dagegen die k_f –Werte < 1 x 10^{-6} m/s, führt dies zum Wassereinstau (z.B. Seenbildung) und zur Vernässung des Bodens und zur Entstehung anaerober Milieuverhältnisse.

6.4 Bewertungsgrundlage für Bodenluftuntersuchungen

Die Bewertung der Bodenluft basiert auf den Empfehlungen der LAWA (1994) /14/ und der im Anhang genannten Orientierungswerte für Bodenbelastungen. Wenn der Prüfwert überschritten worden ist, sollten weitere Untersuchungen durchgeführt werden. Bei Überschreitung der Maßnahmenschwellenwerte sollte in Absprache mit der zuständigen Behörde ggf. eine Sanierung erfolgen. Die entsprechenden Werte für die Einstufung von Bodenluftkontaminationen sind in folgender Tabelle aufgeführt.

Tabelle 9: Prüf- und Maßnahmenschwellenwerte für Bodenluft, LAWA (1994), BTEX-Werte zur Orientierung

Parameter	Prüfwert [mg/m³]	Maßnahmenschwellenwert [mg/m³]
LHKW	5-10	50
BTEX	5-10	50

In ALEX Merkblatt ALEX 02 (/7/) ist unter Hinweis 3 eine Bewertungsmatrix aufgeführt, anhand derer Bodenluftbefunde beurteilt werden können. Hierbei ist zu berücksichtigen, dass die in folgender Tabelle wiedergegebenen Werte zur orientierenden Gefahrenabschätzung bei Schadensfällen dienen:

Tabelle 10: Werte für Bodenluft zur Gefahrenabschätzung nach ALEX 02, Rheinland-Pfalz Stand Juli 1997

Summe LHKW	AKW	zu ergreifende Maßnahmen
< 1 mg/m ³	< 1 mg/m ³	keine
1 – 10 mg/m ³	1 – 10 mg/m ³	über weitere Untersuchungen und Vorgehensweise entscheidet die zuständige Fachbehörde
> 10 mg/m ³	> 10 mg/m ³	weitere Untersuchungen sind zu veranlassen
ab 50 mg/m ³	ab 50 mg/m ³	sofortiger Sanierungsbedarf bei LHKW, bei AKW ist eine Sanierung in Erwägung zu ziehen

7 Umwelt- und abfalltechnische Bewertung

Die umwelttechnische Bewertung orientiert sich an der geplanten Nutzung als Kindertagesstätte ohne tiefgreifende Eingriffe in den Untergrund. Betrachtet werden die Wirkungspfade Boden-Mensch sowie Boden-Grundwasser.

Der Wirkungspfad Boden-Nutzpflanze wird nicht betrachtet. Hier scheint es sinnvoll, dies erst bei einer konkret geplanten Nutzung (bspw. Außenanlagen der Kindertagesstätte) weiter zu bearbeiten.

7.1 Bodenschutzrechtliche Bewertung der Auffüllungen und des Anstehenden

Im Südteil wurden 2017 innerhalb der Auffüllung erhöhte Gehalte an PAK nachgewiesen, die über den Prüfwerten oPW 3 für nichtsensible Nutzungen wie Gewerbe und Industrie liegen. Der Gehalt an Benzo(a)pyren liegt noch unterhalb des Prüfwerts für Wohngebiete gemäß BBodSchV.

Im mittleren und nördlichen Teilstück werden 2018 bei allen untersuchten Proben der Auffüllungen und des anstehenden Schluffs die Prüfwerte oPW 1 für multifunktionale Nutzung sowie die Prüfwerte für Kinderspielflächen gemäß BBodSchV eingehalten.

7.2 Bodenschutzrechtliche Bewertung der Oberböden

Die für die drei Teilstücke des Untersuchungsgeländes gebildeten Oberflächenmischproben zeigten keine Überschreitung der Prüfwerte oPW 1 für multifunktionale Nutzung sowie die Prüfwerte für Kinderspielflächen gemäß BBodSchV.

7.3 Wirkungspfad Boden-Mensch

Die Untersuchungen belegen, dass von den Oberflächen über den Wirkungspfad Boden-Mensch derzeit keine Gefährdung ausgeht. Die insbesondere im Südteil vorliegenden Auffüllungen mit einem Gefährdungspotential über den Wirkungspfad Boden-Mensch sind derzeit überdeckt, sodass ein Kontakt wirksam unterbunden ist.

7.4 Wirkungspfad Boden Grundwasser

Eine Gefährdung des Schutzgutes Grundwasser kann aus den vorliegenden Daten nicht abgeleitet werden. So liegen im Großteil des Geländes meist nur geringmächtige Auffüllungen vor, welche in der Regel nur geringe Auffälligkeiten aufweisen. Zusätzlich wird durch die unterhalb der Auffüllungen flächig angetroffenen Schluffe eine vertikale Ausbreitung der Schadstoffe eingeschränkt. So liegen - wie in Kapitel 4.2 dargestellt - die für die Schluffe berechneten k_f -Werte im Bereich von 1,4 bis 1,5 x 10^{-6} m/s.

Aufgrund der PAK-Befunde im südlichen Teilstück wurde für diesen Bereich eine orientierende Abschätzung der Grundwassergefährdung auf Basis der Entscheidungsmatrix in ALEX 13, Tabelle 2 durchgeführt und in Anlage 7 zusammengefasst. Bei der Betrachtung der Ergebnisse ist zu berücksichtigen, dass es sich um eine orientierende Bewertung auf Basis eines einzelnen Mischprobenergebnisses handelt.

Vorbehaltlich der weiteren Planungen für das Gelände und behördlicher Entscheidungen, könnte aus fachgutachterlicher Sicht auf die in ALEX 13 empfohlenen, weitergehenden Untersuchungen verzichtet werden.

7.5 Bodenluft

Der Prüfwert sowie der Maßnahmenschwellenwert der LAWA 1994, Tabelle 3 werden in der orientierenden Beprobung in KRB 09 nicht überschritten. Aufgrund des Befundes im Bereich 1-10 mg/m³ entscheidet gemäß ALEX 02 (/7/) die zuständige Fachbehörde über weitere Untersuchungen.

Vorbehaltlich anderslautender, behördlicher Entscheidungen sehen wir aber aufgrund der geringen Konzentrationen und der bekannten Nutzungsgeschichte eine weitere orientierende Bodenluftuntersuchung als nicht notwendig an.

7.6 Abfallrechtliche Bewertung

Falls eine Entsorgung der Auffüllungen notwendig werden sollte, betrifft dies vor allem den südlichen Teilbereich. Hier ist gemäß der Ergebnisse der abfallrechtlichen Untersuchung mit Bodenmaterial der Klasse Z1.2 bis > Z2 gemäß LAGA (2004) zu rechnen. Ausgehend von einer Mächtigkeit der Auffüllungen von ca. 1 m und einer Fläche von ca. 3.000 m² muss mit bis zu 3.000 m³ belastetem Aushubmaterial gerechnet werden.

Für den mittleren und den nördlichen Teil zeigen die untersuchten Auffüllungen und das Anstehende ("MP Schluff Schurf 4-7 0,3-1,5", "MP Auffüllung Schurf 8 0,1-0,9", und "MP Auffüllung Schurf 4-7 0,05-0,6") nur geringe Auffälligkeiten. Nur aufgrund von erhöhten organischen Gehalten (TOC-Werte) könnte für Teile des Materials eine Einstufung als Z 2 gemäß LAGA (2004), erfolgen. Da der TOC-Gehalt je nach Entsorgungs- oder Verwertungsweg nicht bewertungsrelevant ist, könnte auch eine günstigere Einstufung möglich sein.

Für den mittleren Abschnitt wird die Kubatur auf etwa 1.500 m³ (Mächtigkeit ca. 0,6 m, Fläche ca. 2.500 m²) und im nördlichen Abschnitt auf ca. 1.800 m³ (Mächtigkeit ca. 0,8 m, Fläche ca. 2.250 m²) geschätzt.

Die abschließende abfallrechtliche Einstufung sollte aufgrund von Haufwerksbeprobungen nach LAGA PN98 durchgeführt werden.

7.7 Ergänzende Bewertung der PAK-Befunde

Bei den im Südteil der Untersuchungsflächen festgestellten PAK-Befunden handelt es sich um eine nach Art und Höhe typische in Auffüllungen zu findende Belastung. Diese sind erfahrungsgemäß "ubiquitär" auf vergleichbaren Standorten (innerstädtisch, Sportanlagen, Grünstreifen, Parks …) in vergleichbaren Konzentrationen anzutreffen. In der Regel liegen Brandschuttreste, feinverteilte Kohlestücke oder auch Teerdeckenbruchstücke vor, von denen zumeist nur eine geringe umweltrechtliche Gefährdung ausgeht, die aber zumeist abfalltechnisch einstufungsrelevant sind.

8 Bautechnische Beurteilung

In der baugrundtechnischen Bewertung wird nur auf den mittleren und den nördlicheren Teilbereich des Grünstreifens Bezug genommen. Für die Daten zu dem 2017 untersuchten südlicheren Teilstück wird auf den entsprechenden Bericht (/1/) verwiesen.

8.1 Bodengruppen, Bodenklassen, Frostsicherheit, Bodenkennwerte

In der nachfolgenden Tabelle 11 sind die gängigen bautechnischen Kenndaten bzw. Bodenklassifizierungen für Ausschreibungen etc. aufgeführt.

Tabelle 11: Bautechnische Klassifizierung

		Oberboden (aufgefüllt)	Auffüllungen (nur Bereich KRB 14 u. 15)	Schluffe, im ober- flächigen Bereich aufgefüllt bzw. umgelagert	Sande bzw. schluf- fige Sande
Beschreibung		Schluff, feinsan- dig, humos	Sande, Schluffe, kiesig	Schluff, (schwach) feinsandig, (schwach) tonig	Fein- und Mittels- and, z. T. schluffig
Tiefenlage	m u. GOK	0,0 bis 0,1 / 0,6	0,1 / 0,6 bis 1,0 / 1,2	0,5 / 1,2 bis 1,3 / 2,4	ab 1,3 / 2,4bis > 5,0*
Bodengruppe nach DIN 18196		[OU]	[SU, SU', UL, UM]	UL, UM	SE, SI, SW, SU und UL
Bodenklasse nach DIN 18300 (2009) ¹		1	3-4	4	3-4
Frostempfind- lichkeitsklasse gem. ZTV E-StB		F3 (sehr frostempfindlich)	F1-F3 (nicht bis sehr frostempfindlich)	F3 (sehr frostempfindlich)	F2-F3 (mittel bis sehr frostempfindlich)

^{*: &}lt;sup>1</sup> in der KRB 8 (südlicher Bereich der aktuellen Untersuchungsfläche) stehen ab 3,3 m u. GOK wiederum sandige Schluffe an

1

¹: Norm aufgehoben, informativ

Setzungs- und Grundbruchberechnungen erfordern eine sinnvolle Vereinfachung der angetroffenen Bodenverhältnisse zu einem Baugrundmodell. Das Baugrundmodell ist in der nachfolgenden Tabelle 12 zusammengefasst.

Die Lagerungsdichte und der Bodenaufbau variieren innerhalb der Untersuchungsfläche. Für die Angabe von einheitlichen Werten ist es erforderlich, die ungünstigeren Verhältnisse zugrunde zu legen.

Tabelle 12: Bodenkennwerte

		Auffüllungen (nur Bereich KRB 14 u. 15)	Schluffe	Sande bzw. schluffige Sande
Tiefenlage	m u. GOK	0,1 / 0,6 bis 1,0 / 1,2	0,5 / 1,2 bis 1,3 / 2,4	ab 1,3 / 2,4bis > 5,0*
Lagerungsdichte/ Konsistenz		locker gelagert	steif bis halbfest	locker bie mittldicht gelagert
γWichte (erdfeucht)	kN/m³	18-20	20,5	18,5-19,5
γ' Wichte (unter Auftrieb)	kN/m³	8-12	10,5	8,5-9,5
φ' Reibungswinkel	0	27-30	27	30
c' Kohäsion c _u (undräniert)	kN/m² kN/m²	0	3 20	0
E _s Steifemodul	MN/m²	5-15	10	30

Für den Oberboden werden keine Bodenkennwerte angegeben, da er bautechnisch nicht geeignet ist und im Bereich von zu errichtenden Bauwerken auszubauen ist.

8.2 Erdbebenwirkung

Zur Berücksichtigung der Erdbebenwirkung (Erdbebenzone 1) ist gem. DIN 4149 (Ausgabe 04.2005) für die auf dem Untersuchungsgelände vorliegenden Untergrundverhältnisse die Untergrundklasse S sowie die Baugrundklasse C anzusetzen.

8.3 Frostzone

Das untersuchte Gelände liegt nach dem Kommentar zu den ZTV E-StB 09 /15/ in der Frosteinwirkzone I, Gebiet 2, in der Frosteindringtiefen zF von 90 bis 95 cm zu erwarten sind.

8.4 Bewertung der Versickerungsversuche

Für die ab ca. 1,6/1,8 m u. GOK anstehenden schluffigen Sande kann ein k_f -Wert von ca. 1,4 x 10^{-6} m/s angesetzt werden. Sie erfüllen demnach die Vorgaben der DWA-A 138 hinsichtlich einer wirksamen Versickerung. Der Wert liegt allerdings an der unteren Grenze des für die Versickerung von Niederschlagswasser geeigneten Bereichs. Für eine Regenwasserversickerung sind i.d.R. Böden mit k_f -Werten zwischen 1 x 10^{-3} und 5 x 10^{-6} m/s geeignet. Die Sande weisen somit ungünstige Eigenschaften für die Anlage einer Regenwasserversickerungsanlage auf. Die darüber anstehenden Schluffe sind noch ungünstiger zu bewerten.

Weiterhin ist bei der Tiefenlage der schluffigen Feinsande der Bau von technischen Einrichtungen wie Versickerungsrigolen, Mulden-Rigolen-Systemen oder Versickerungsschächten erforderlich. Bei einer Versickerungsrigole wird dabei i.d.R. ein Mindestabstand zum Grundwasser (mittlerer höchster Grundwasserstand MHGW) von 1,0 m und für Versickerungsschächte von 1,5 m gefordert. Es ist am konkreten Bauvorhaben zu prüfen, ob die o. g. Mindestabstände zwischen Grundwasser und Sohle der Versickerungseinrichtung gewährleistet werden können.

Aus derzeitiger Sicht ist die Umsetzung einer Versickerung nur mit erhöhtem technischen Aufwand realisierbar.

9 Baugrundbewertung

9.1 Allgemeine Baugrundbeurteilung

Die in den untersuchten Bereichen angetroffenen Böden können baugrundtechnisch wie folgt bewertet werden:

- Der bis 0,1/0,6 m u. GOK vorhandene Oberboden ist gründungstechnisch ungeeignet und muss im Bereich von gepl. Bauwerken entfernt werden
- Die Auffüllungen (Bereich KRB 14 und 15) sind sehr inhomogen in Zusammensetzung und Lagerungsdichte und als Gründungsebene direkt nicht geeignet
- Sofern Fundamentsohlen oder Sohlen von Bodenplatten etc. im Bereich der Auffüllungen zu liegen kommen, sind gründungstechnische Zusatzmaßnahmen erforderlich
- Als gründungstechnische Zusatzmaßnahmen kommen, abhängig von der Art/Setzungsempfindlichkeit des geplanten Bauwerks, z. B. ein partieller oder vollständiger Bodenaustausch in Frage
- Die unterhalb der Auffüllungen anstehenden Schluffe liegen in steifer bis halbfester Konsistenz vor und sind bei Beachtung der unten stehenden Maßnahmen für die Gründung von Bauteilen mit geringen baugrundtechnischen Anforderungen direkt geeignet
- Die Schluffe sind empfindlich gegenüber Nässe, Frost und direkten Beanspruchungen (z. B. Befahren mit Fahrzeugen), die o. g. Tragfähigkeit ist daher nur bei einer nicht aufgeweichten oder aufgelockerten Fläche gegeben
- Bei Bauwerken mit höheren baugrundtechnischen Anforderungen (z. B. setzungsempfindliche und/oder mehrgeschossige Häuser) sind i. d. R. baugrundtechnische Zusatzmaßnahmen (z. B. Einbau von Trag-/Ausgleichsschichten) erforderlich
- Die unterhalb der Schluffe vorliegenden Sand-/Schluff-Wechsellagerung ist nach erfolgter Verdichtung für einen Geschossbau mit geringen bis mittleren Lasten ausreichend tragfähig und setzungsunempfindlich.

Art und Umfang der erforderlichen gründungstechnischen Maßnahmen können erst nach Vorliegen von Daten zum geplanten Bauprojekt (Art des Bauwerks, aufkommende Lasten, Setzungsempfindlichkeit etc.) abschließend definiert werden. Wir empfehlen daher, nach Vorliegen dieser Daten, eine detaillierte Baugrundbewertung und Gründungsempfehlung durchführen zu lassen. Ggf. sind hierzu weitere Bodenuntersuchungen erforderlich.

9.2 Wasserhaltung, Bemessungswasserstand

Im Rahmen der Untersuchungen wurde bis 3,0 m u. GOK bzw. bis ca. 87,5 m ü. NN kein Grundwasser angetroffen. Die Untersuchungen wurden in einem Zeitraum mit allgemein niedrigen Grundwässerständen ausgeführt. Saisonal ist daher mit höheren Grundwasserstände zu rechnen. Ein Bemessungswasserstand ist gemäß telefonischer Auskunft der zuständigen SGD Süd nicht verfügbar. Nach vorliegenden Daten/Informationen ist Grundwasser ab ca. 87 m ü. NN zu erwarten, sodass – unter Berücksichtigung möglicher Schwankungen - eine permanente Grundwasserhaltung bei Aushubtiefen bis 2,0 m u. GOK voraussichtlich nicht erforderlich sein wird.

9.3 Gebäudeabdichtung

Bei Lage der Gründungssohlen innerhalb der Schluffe kann es in den Arbeitsräumen zum Aufstau von Sickerwasser kommen. Bei Lage von Gebäudeteilen (z. B. Keller) innerhalb der Schluffe bzw. innerhalb der wassergesättigten Bodenzone ist daher eine Abdichtung gemäß DIN 18195-6 erforderlich.

9.4 Böschungen, Baugruben

Bei der Herstellung von Baugruben ist DIN 4124 zu beachten. Bei Aushubarbeiten mit einer Tiefe bis maximal 1,25 m u. GOK kann hiernach senkrecht geböscht werden, wenn die Kurzzeitstandfestigkeit des Bodens gegeben ist.

Bei Aushubarbeiten tiefer 1,25 m u. GOK dürfen die Böschungen bei den angetroffenen Bodenverhältnissen im Bereich der Auffüllungen mit einem Böschungswinkel von max. 45° und im Bereich der mindestens steifen Schluffe von max. 60° im angelegt werden.

Durch den Bauablauf ist dabei sicherzustellen, dass Fahrzeuge bis 12 t Gesamtgewicht einen Abstand von mindestens 1,0 m zur Böschungsoberkante einhalten. Fahrzeuge über 12 t Gesamtgewicht müssen einen Abstand von mind. 2,0 m zur Böschungsoberkante einhalten.

Die Standfestigkeit der Böschungen ist ständig zu beobachten. Sollten während der Erdarbeiten fließende bzw. nicht standfeste Bodenschichten angetroffen werden, so sind die Böschungen den erdstatischen Erfordernissen entsprechend anzupassen. In Zweifelsfalle ist der Baugrundgutachter erneut rechtzeitig einzuschalten.

Die Böschungen der Baugruben sollten durch Abdecken mit Baufolie gegen Niederschlag geschützt werden. Das Niederschlagswasser ist in der Baugrube kontrolliert zu sammeln und abzuführen, um ein Durchnässen der Baugrubensohle zu verhindern.

9.5 Allgemeine Hinweise und Empfehlungen

Freigelegte Untergrundplanien sind grundsätzlich gegen Witterungseinflüsse (Niederschlag, Frost usw.) zu schützen.

Bindige Anteile der Auffüllungen und die unterhalb der Auffüllungen anstehenden Schluffe können bei Wasserzutritt stark aufweichen. Diese Eigenschaft wird durch mechanische Beanspruchung (z.B. LKW- oder Baggerverkehr) verstärkt. Wir empfehlen daher, im Rahmen der baubetrieblichen Planung die Anlage von Baustraßen bzw. die Befestigung der Arbeitsplätze von schwerem Gerät, um einem Aufweichen dieser Böden entgegenzuwirken.

Sämtliche baugrundtechnischen Empfehlungen dieses Gutachtens basieren auf den lokalen Aufschlüssen der durchgeführten KRB/DPH und den vorliegenden Angaben zur Baumaßnahme. Sollten von den Annahmen abweichende Gebäudestandorte und/oder - varianten zur Ausführung kommen, sind die lokalen bodenmechanischen Eigenschaften erneut fachgutachterlich zu überprüfen.

Sollten während der Bauarbeiten sich abweichend verhaltende oder weniger tragfähige Baugrundbereiche angetroffen werden, ist der Baugrundgutachter zur Festlegung eventuell notwendiger Anpassungsmaßnahmen erneut und rechtzeitig einzuschalten.

Wir empfehlen, nach Vorliegen der Daten zum geplanten Bauwerk, eine detaillierte Baugrundbewertung und Gründungsempfehlung durchführen zu lassen. Ggf. sind hierzu weitere Bodenuntersuchungen erforderlich.

Die vorliegende orientierende Baugrundbewertung ist daher nicht zur Preiskalkulation im Rahmen von Ausschreibungen von Baumaßnahmen auf dem Gelände verwendbar.

10 Zusammenfassung mit Empfehlungen zur weiteren Vorgehensweise

Die orientierende Untersuchung bezüglich der Errichtung einer Kindertagesstätte auf dem Grünstreifen erbrachte keine Ergebnisse, die aus baugrundtechnischer, umwelttechnischer oder abfalltechnischer Sicht dem Vorhaben grundsätzlich entgegenstehen würden. Die Anforderungen hinsichtlich der Baugründung aber auch hinsichtlich gesicherter Wohn- und Arbeitsverhältnisse gehen nicht über ein ortsübliches Maß für die Bebauung einer innerstädtischen Brachfläche hinaus.

Die unterhalb der Auffüllungen (meist bis ca. 0,3 m unter GOK, lokal bis maximal 1,8 m unter GOK) anstehenden Schluffe sind - unter Berücksichtigung baugrundtechnischer Zusatzmaßnahmen - für die Gründung von Bauteilen geeignet. Art und Umfang der erforderlichen gründungstechnischen Maßnahmen können aber erst nach Vorliegen von Daten zum geplanten Bauprojekt definiert werden.

Grundwasser ist ab ca. 87 m ü. NN zu erwarten, sodass eine permanente Grundwasserhaltung erst bei Aushubtiefen > 2,0 m u. GOK erforderlich werden könnte.

Die orientierende umweltrechtliche Untersuchung zeigt im Südteil innerhalb der Auffüllung erhöhte Gehalte an PAK. Der Nordteil und der größere mittlere Abschnitt zeigen in den Auffüllungen keine umweltrechtlich bedeutenden Auffälligkeiten. Aufgrund der derzeitigen Überdeckung mit Oberboden ist ein direkter Kontakt Boden-Mensch mit den Auffüllungen nicht möglich. Sollte die Bedeckung im Zuge von Baumaßnahme o.ä. entfernt werden, ist der direkte Kontakt durch Bodenaustausch oder Überdeckung mit geeigneten Materialien oder Boden zu unterbinden.

Es wird empfohlen, diejenigen Flächen, die im Zuge von Baumaßnahmen freigelegt werden und zukünftig einen direkten Kontakt zwischen dem anstehenden Untergrund und dem Menschen ermöglichen, auf eine Belastung durch PAK zu überprüfen.

Die Oberböden zeigen in allen drei Teilstücken umwelt- und abfallrechtlich keine Auffälligkeiten. Sie stellen derzeit eine wirksame Barriere zu den Auffüllungen bezüglich des Wirkungspfads Boden-Mensch dar.

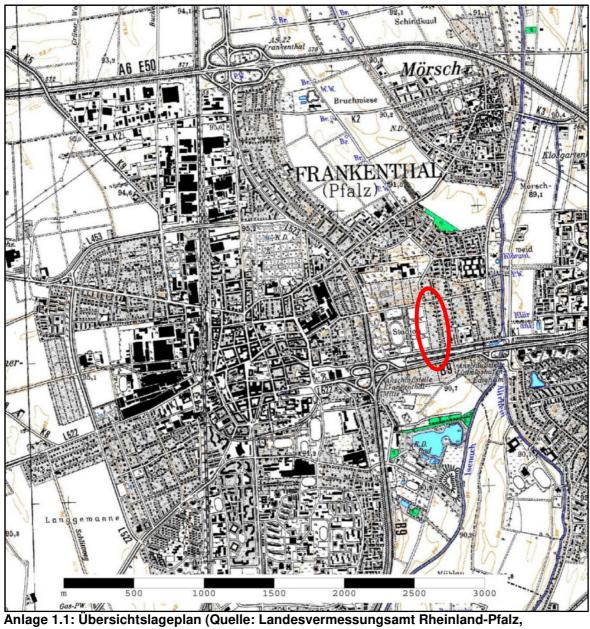
Im Rahmen von Erdarbeiten innerhalb der Auffüllungen sollte auf organoleptisch auffälligen Bodenaushub geachtet werden und dieser bis zur Klärung der abfallrechtlichen Relevanz separat gelagert werden. Grundsätzlich ist bei Erdarbeiten mit Mehrkosten für die Entsorgung von belasteten Auffüllungen zu rechnen. Sobald das Vorhaben konkretisiert wird, können Kostenschätzungen zur Ermittlung des baugrund- und entsorgungstechnisch bedingten Mehraufwandes aufgestellt werden.

Eine Versickerung ist aufgrund der ungünstigen Eigenschaften des anstehenden Untergrunds sowie des fehlenden Abstands zwischen Grundwasser und Sohle vermutlich nur mit erhöhtem Aufwand realisierbar.

11 Schlussbemerkungen

Sämtliche Empfehlungen dieses Gutachtens basieren auf den lokalen Aufschlüssen der durchgeführten Bohrungen und Rammsondierungen. Die durchgeführten Untersuchungen ersetzen nicht die baugrundtechnische Untersuchung und die abfallrechtliche Einstufung von anfallendem Erdaushub am konkreten Einzelbauvorhaben.

Sollten während der Bauarbeiten sich abweichend verhaltende oder weniger tragfähige Baugrundbereiche angetroffen werden, ist der Gutachter zur Festlegung eventuell notwendiger Anpassungsmaßnahmen erneut und rechtzeitig einzuschalten.


Bericht Orientierende Altlasten- und Baugrunduntersuchung Ostseite des Ostparks Stadtverwaltung Frankenthal Bereich Planen und Bauen, Bericht-Nr. 931817.G01 20.12.2018

Anlage 1 Lagepläne

2 Seiten

Anlage 1.1 Übersichtlageplan Anlage 1.2 Lage der Aufschlüsse

Topographische Karte 1:25.000) (rot ... Untersuchungsgebiet)

Legende:

KRB1 o Kleinrammbohrung 2017

DPH1 o schwere Rammsondierung 2017

KRB /
DPH 10 Rammkernsondierung /
schwere Rammsondierung 2018

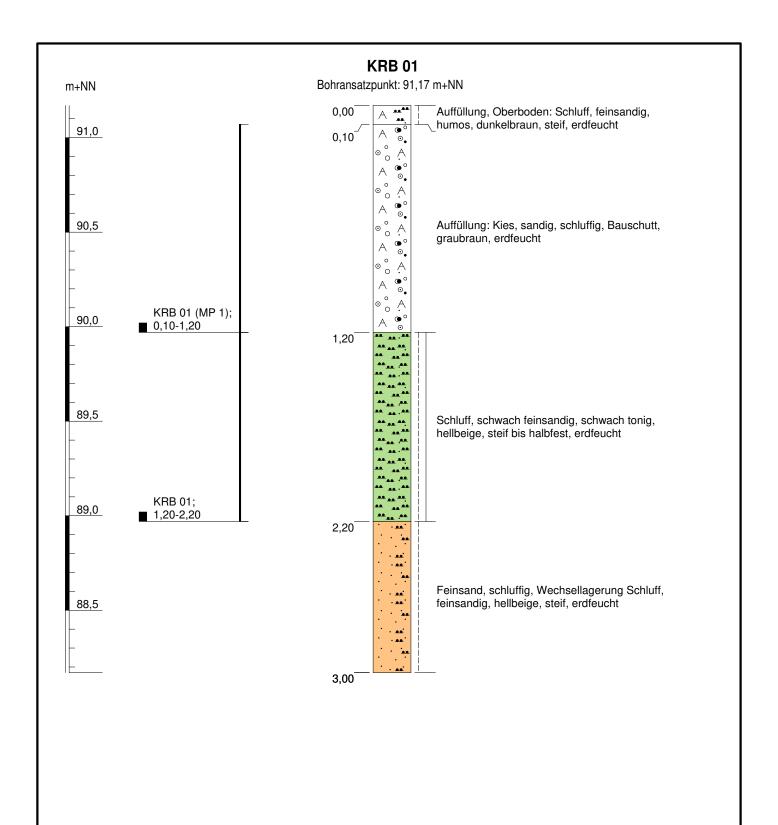
VV1_O Versickerungsversuch

Bodenluftprobenahme

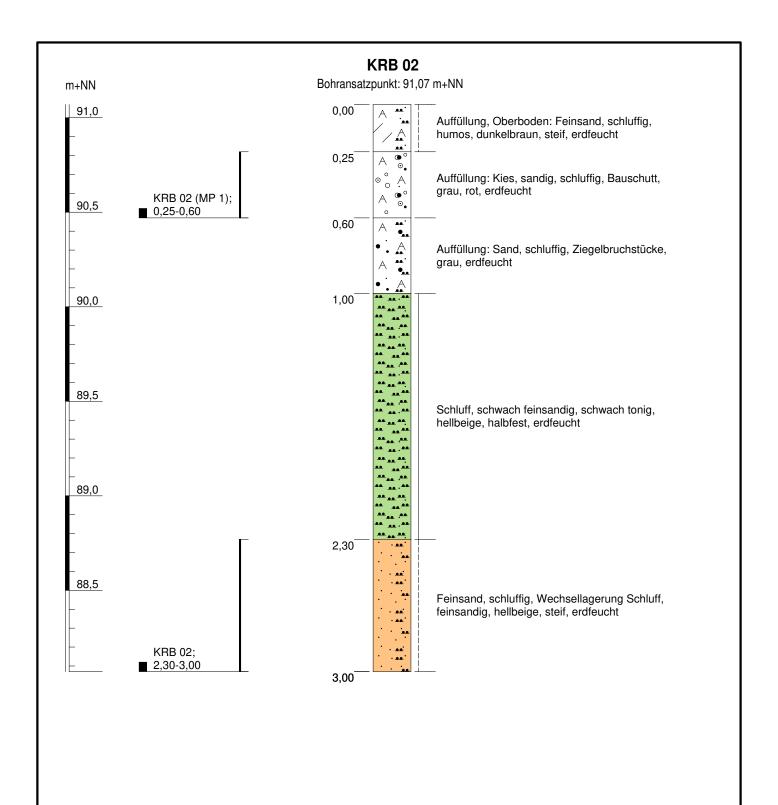
Schurf 2018

Oberbodenmischprobe

20 30 40 50 m

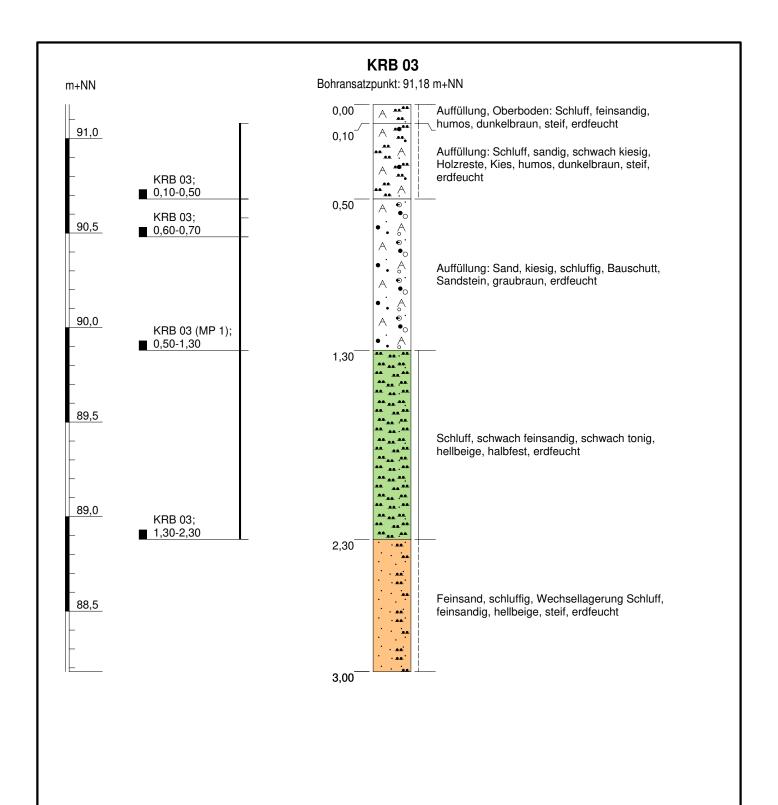

ProjNr.: 931 817	RSK	Barthelsmühlring 18 76870 Kandel/Pfalz Tel: 07275/9857-0	Anlage
Bearbeiter: M. Wäsch	RSK Alenco GmbH	Fax: 07275/9857-99 www.rskgroup.de	Maßstab: 1:1000 (A3)
ZeichNr.: 931 817 L1a		D 1	
gezeich.: P. Dobusch	Lage der Bohrungen Ostpark Frankenthal		
Datum: 12.12.2018			
Grundlage:] .		
geänd.:	Auftraggeber: Stadtverwaltung Frankenthal		

Bericht Orientierende Altlasten- und Baugrunduntersuchung Ostseite des Ostparks Stadtverwaltung Frankenthal Bereich Planen und Bauen, Bericht-Nr. 931817.G01 20.12.2018



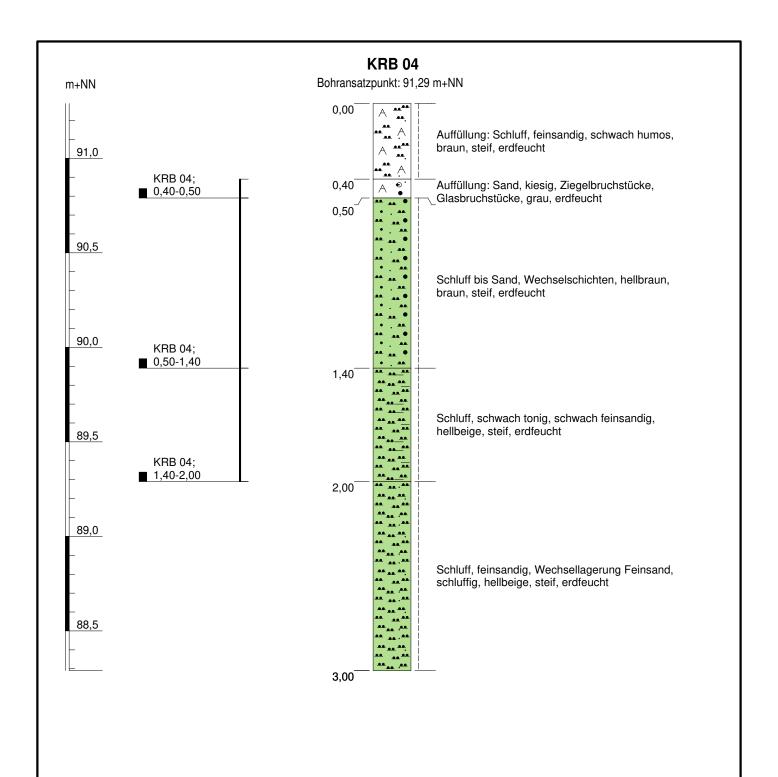
Anlage 2 Schichtprofile KRB und Schurfe

29 Seiten


RSK Alenco GmbH BV Ostpark FT und Hydrogeol Ertung **WST-GmbH** Sondierprofil nach DIN 4023 Elly-Beinhorn-Str.6 69124 Eppelheim Datum Name Projekt-Nr.: 170322 Gez. 06.03.2017 C. Metz Tel.: 06221 - 181780 WST - GmbH Bearb. Fax: 06221 - 181784 03.03.2017 M. Hakala, Dipl. Geol. Maßstab: 1:20 7SMGeän. E-Mail: wst@wst-altlastenerkundung.de Ges. Blattgröße: DIN A4

RSK Alenco GmbH BV Ostpark FT und Hydrogeol. Ertung **WST-GmbH** Sondierprofil nach DIN 4023 Elly-Beinhorn-Str.6 69124 Eppelheim Datum Name Projekt-Nr.: 170322 Gez. 06.03.2017 C. Metz Tel.: 06221 - 181780 WST - GmbH Bearb. 03.03.2017 M. Hakala, Dipl. Geol. Maßstab: 1:20 Fax: 06221 - 181784 7SMGeän. E-Mail: wst@wst-altlastenerkundung.de

Blattgröße: DIN A4


Ges.

RSK Alenco GmbH BV Ostpark FT und Hydrogeol. Ertung **WST-GmbH** Sondierprofil nach DIN 4023 Elly-Beinhorn-Str.6 69124 Eppelheim Datum Name Projekt-Nr.: 170322 Gez. 06.03.2017 C. Metz Tel.: 06221 - 181780 WST - GmbH Bearb. 03.03.2017 M. Hakala, Dipl. Geol. Maßstab: 1:20 Fax: 06221 - 181784 7SMGeän. E-Mail: wst@wst-altlastenerkundung.de

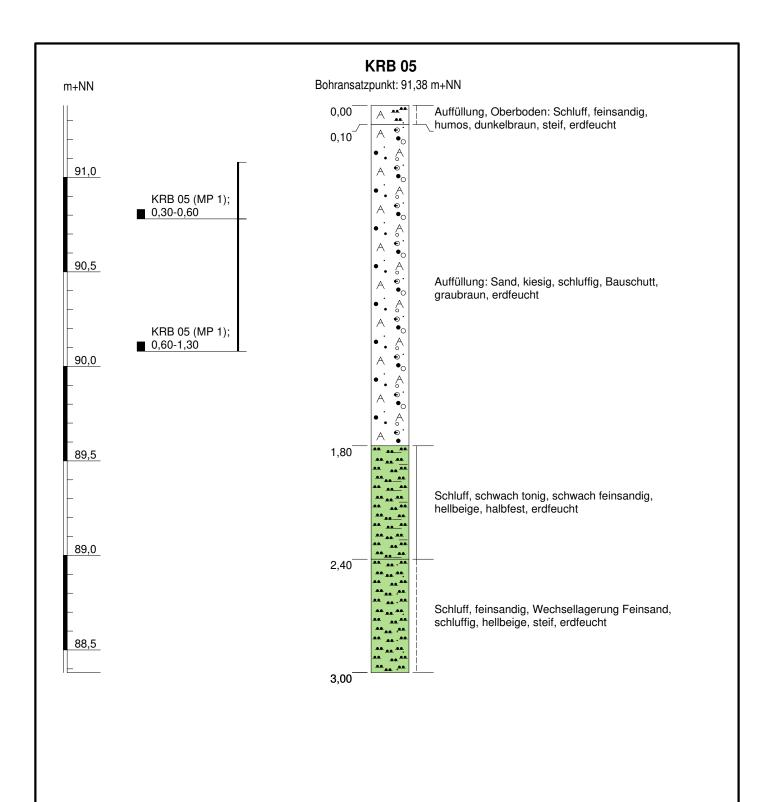
Blattgröße: DIN A4

Ges.

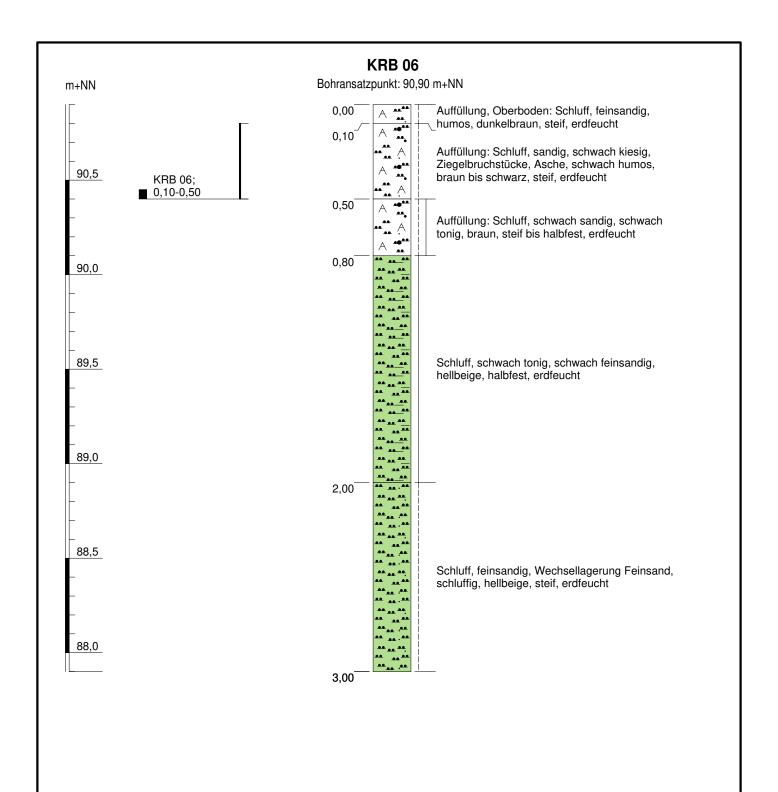
BV Ostpark FT Sondierprofil nach DIN 4023 Datum Name Projekt-Nr.: 170322 Gez. 06.03.2017 C. Metz Bearb. 03.03.2017 M. Hakala, Dipl. Geol. Maßstab: 1:20 Geän.

Blattgröße: DIN A4

Ges.

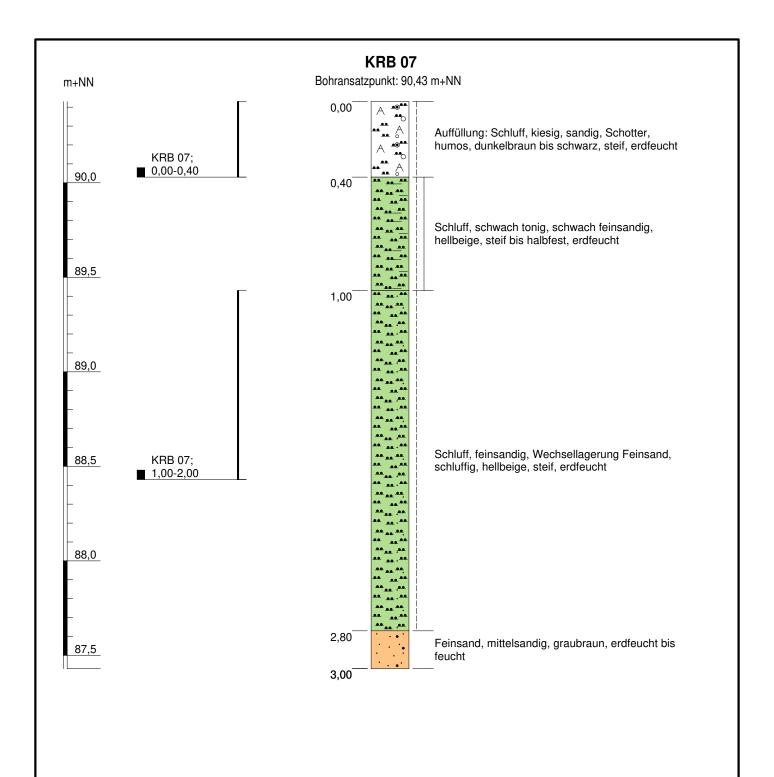

WST - GmbH Reg. MA 335840 HQUID WST

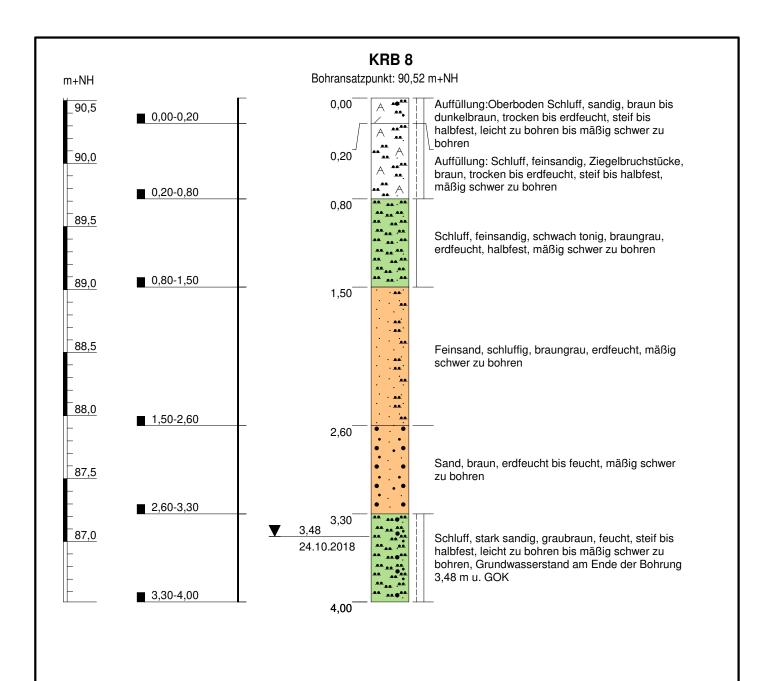
WST-GmbH


RSK Alenco GmbH

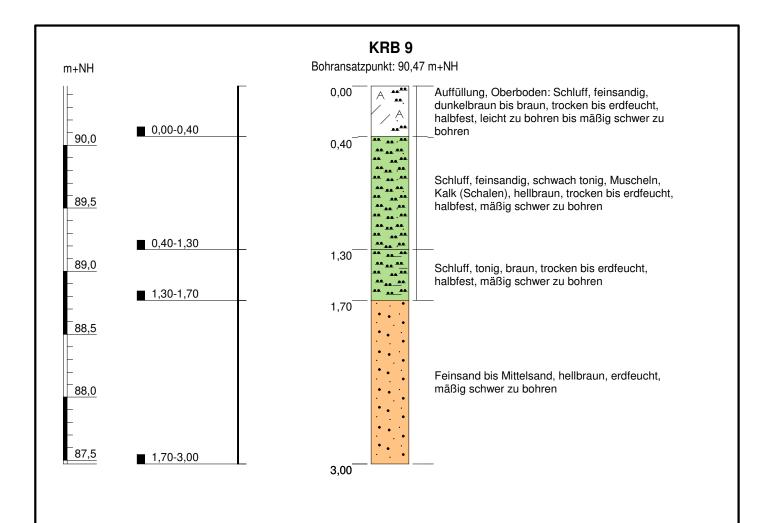
Elly-Beinhorn-Str.6 69124 Eppelheim

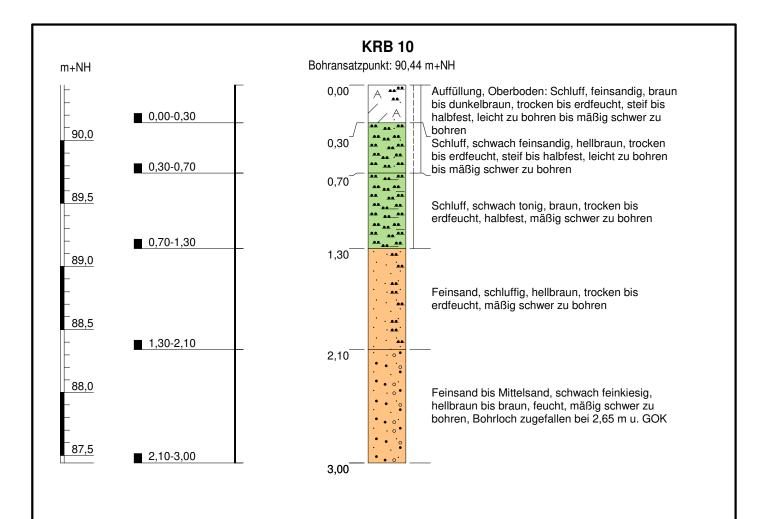
Tel.: 06221 - 181780 Fax: 06221 - 181784

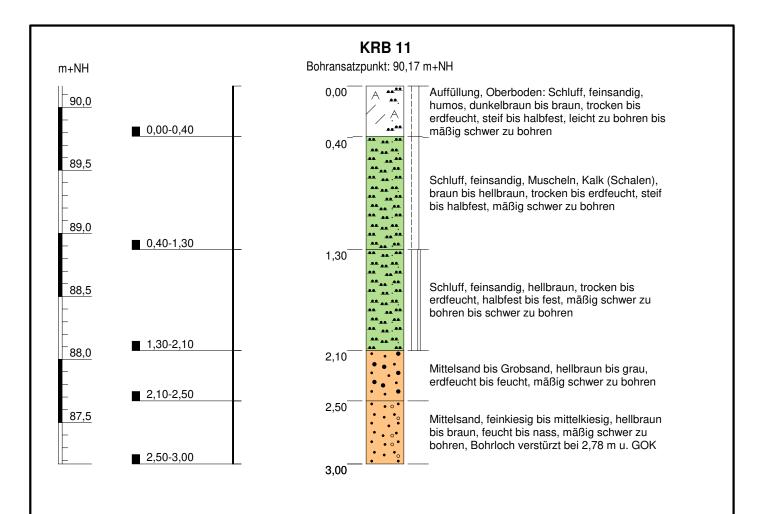

RSK Alenco GmbH BV Ostpark FT und Hydrogeol Ertung **WST-GmbH** Sondierprofil nach DIN 4023 Elly-Beinhorn-Str.6 69124 Eppelheim Datum Name Projekt-Nr.: 170322 Gez. 06.03.2017 C. Metz Tel.: 06221 - 181780 WST - GmbH Bearb. 03.03.2017 M. Hakala, Dipl. Geol. Maßstab: 1:20 Fax: 06221 - 181784 7SMGeän. E-Mail: wst@wst-altlastenerkundung.de Ges. Blattgröße: DIN A4

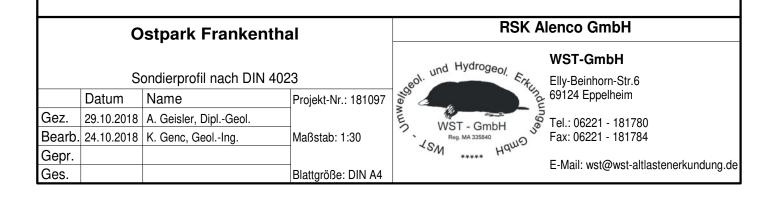

RSK Alenco GmbH BV Ostpark FT und Hydrogeol. Ertung **WST-GmbH** Sondierprofil nach DIN 4023 Elly-Beinhorn-Str.6 69124 Eppelheim Datum Name Projekt-Nr.: 170322 Gez. 06.03.2017 C. Metz Tel.: 06221 - 181780 WST - GmbH Bearb. 03.03.2017 M. Hakala, Dipl. Geol. Maßstab: 1:20 Fax: 06221 - 181784 7SMGeän. E-Mail: wst@wst-altlastenerkundung.de

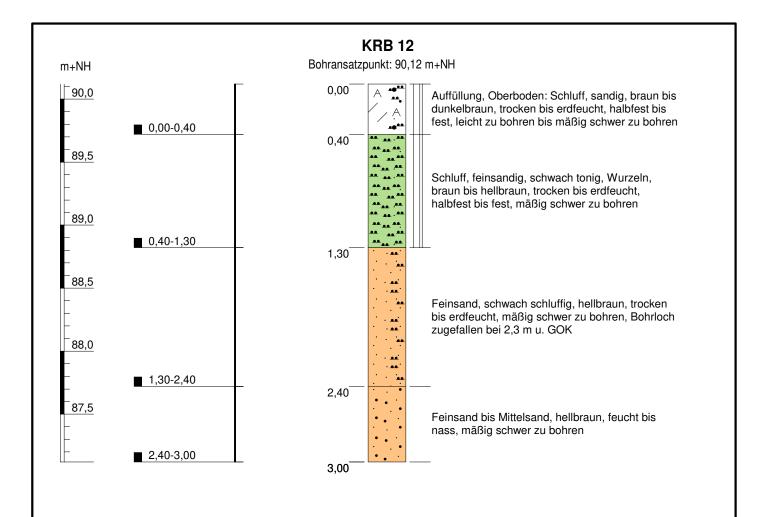
Blattgröße: DIN A4

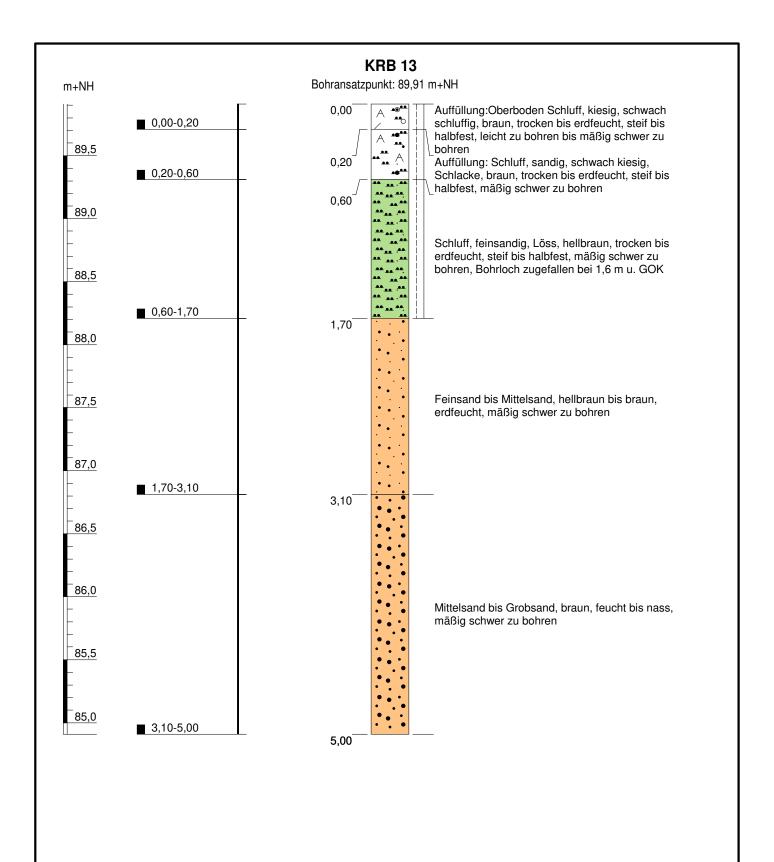

Ges.

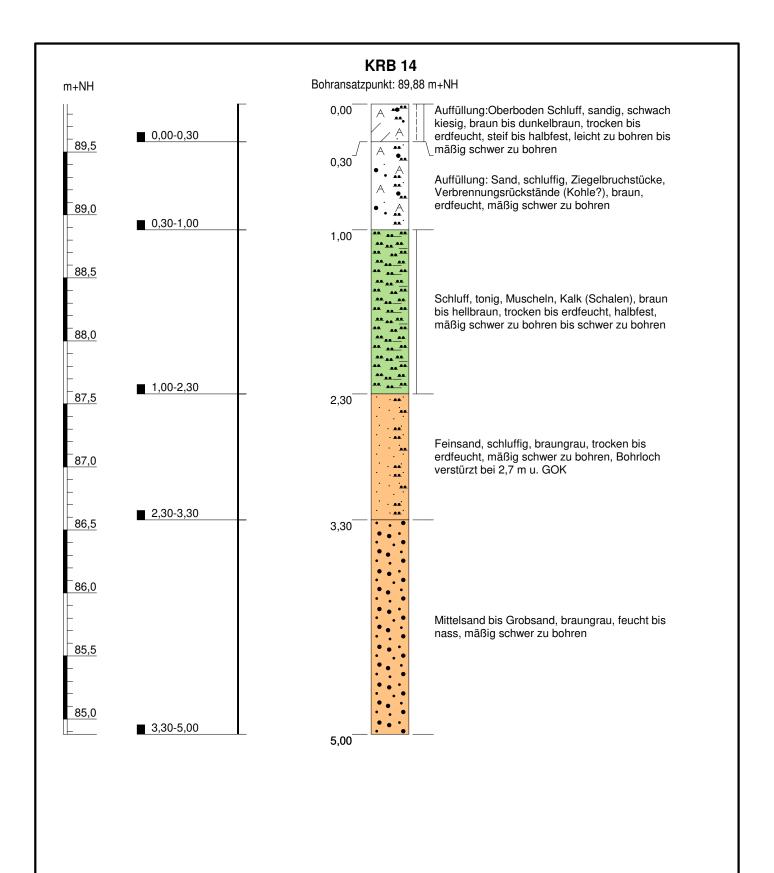

RSK Alenco GmbH BV Ostpark FT und Hydrogeol Ertung **WST-GmbH** Sondierprofil nach DIN 4023 Elly-Beinhorn-Str.6 69124 Eppelheim Datum Name Projekt-Nr.: 170322 Gez. 06.03.2017 C. Metz Tel.: 06221 - 181780 WST - GmbH Bearb. Fax: 06221 - 181784 03.03.2017 M. Hakala, Dipl. Geol. Maßstab: 1:20 7SMGeän. E-Mail: wst@wst-altlastenerkundung.de Ges. Blattgröße: DIN A4

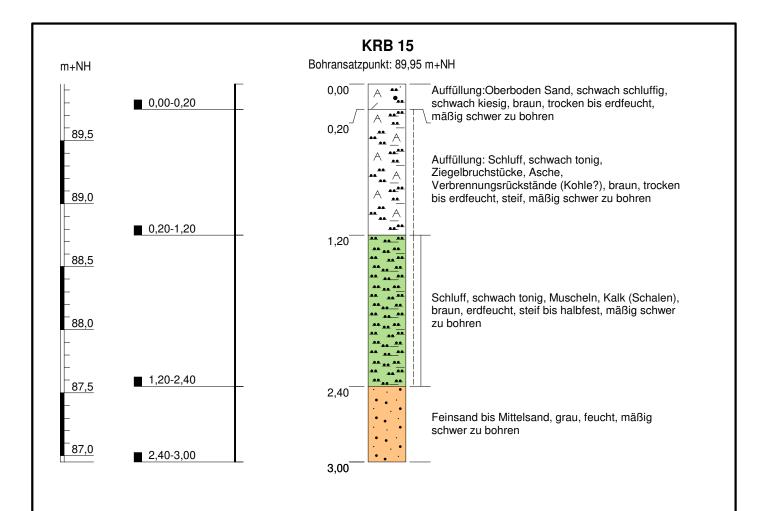


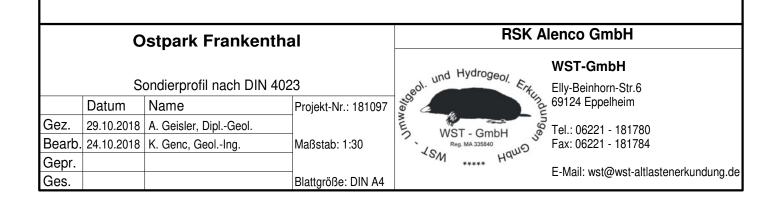




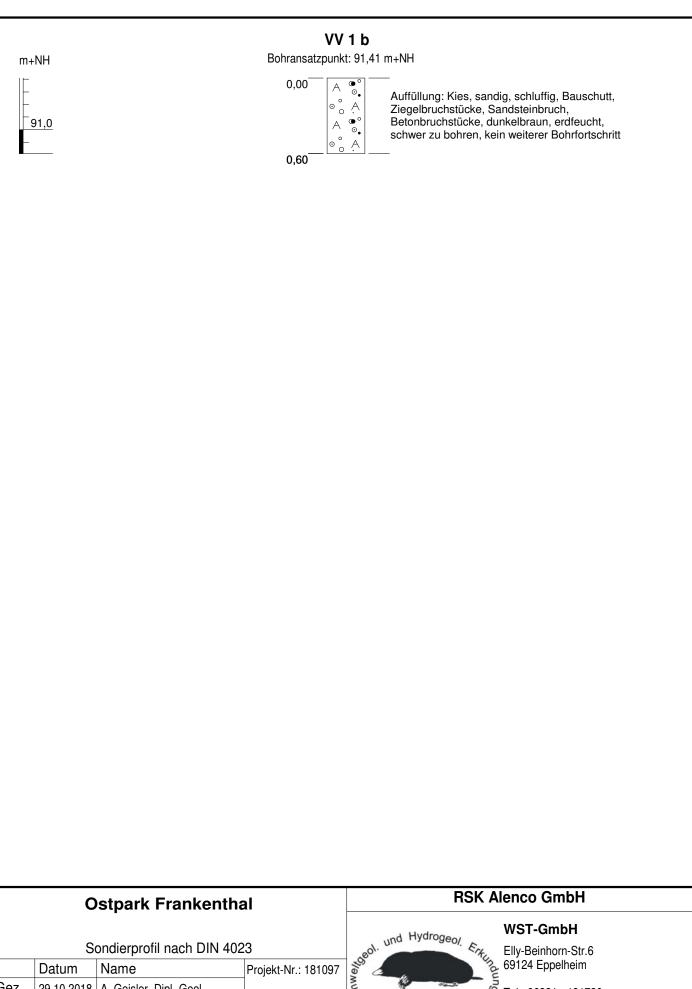








RSK Alenco GmbH Ostpark Frankenthal und Hydrogeol. Erkunge WST-GmbH Sondierprofil nach DIN 4023 Elly-Beinhorn-Str.6 69124 Eppelheim Datum Name Projekt-Nr.: 181097 Gez. 29.10.2018 A. Geisler, Dipl.-Geol. Tel.: 06221 - 181780 WST - GmbH Bearb. 24.10.2018 K. Genc, Geol.-Ing. Maßstab: 1:30 Fax: 06221 - 181784 78^{M} Gepr. E-Mail: wst@wst-altlastenerkundung.de Ges. Blattgröße: DIN A4



Datum Name Projekt-Nr.: 181097 Gez. 29.10.2018 A. Geisler, Dipl.-Geol. Bearb. 25.10.2018 K. Genc, Geol.-Ing. Maßstab: 1:30 Gepr. Ges. Blattgröße: DIN A4

und Hydrogeol. Erkundus WST - GmbH

69124 Eppelheim

Tel.: 06221 - 181780 Fax: 06221 - 181784

Projekt-Nr.: 181097 Maßstab: 1:30 Blattgröße: DIN A4

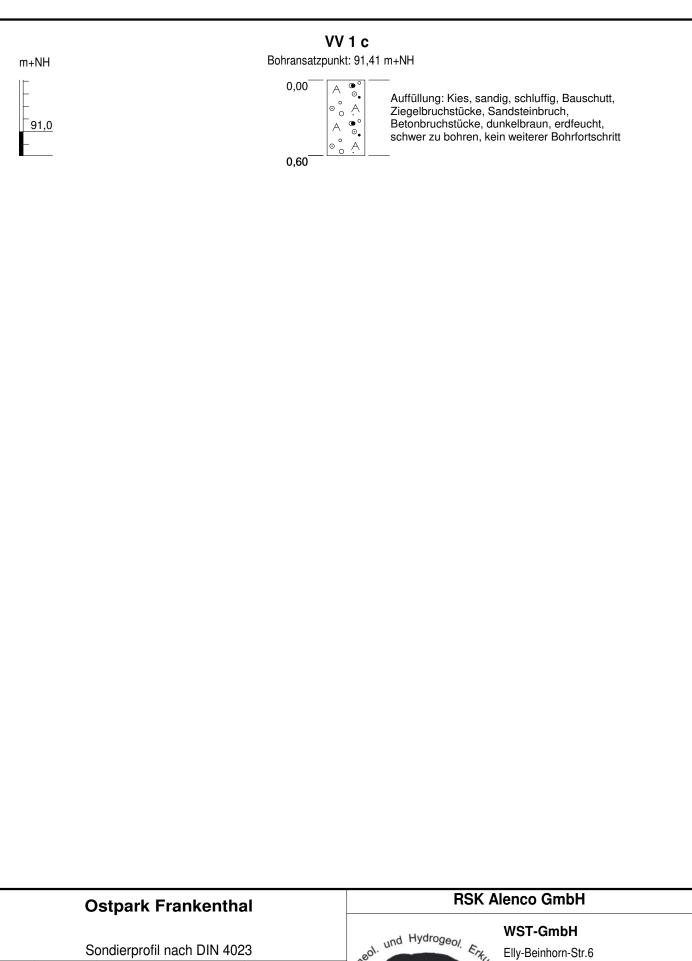
WST - GmbH

Datum

Gez.

Gepr.

Ges.

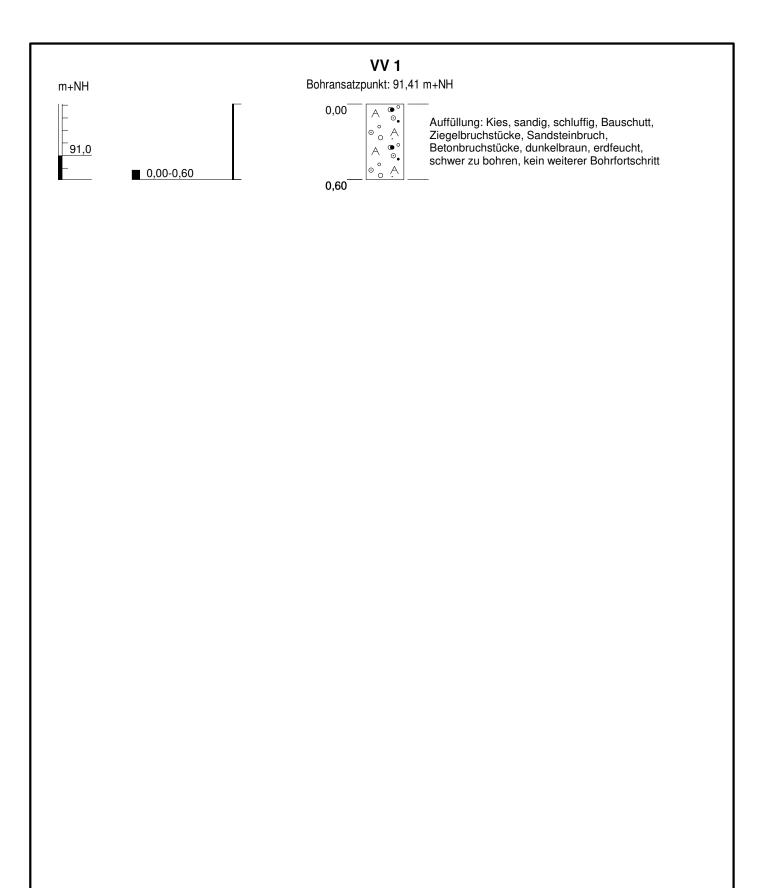

Name

29.10.2018 A. Geisler, Dipl.-Geol.

Bearb. 25.10.2018 K. Genc, Geol.-Ing.

Elly-Beinhorn-Str.6 69124 Eppelheim

Tel.: 06221 - 181780 Fax: 06221 - 181784



Datum Name Projekt-Nr.: 181097 Gez. 29.10.2018 A. Geisler, Dipl.-Geol. Bearb. 25.10.2018 K. Genc, Geol.-Ing. Maßstab: 1:30 Gepr. Ges. Blattgröße: DIN A4

und Hydrogeol. Erkundus WST - GmbH

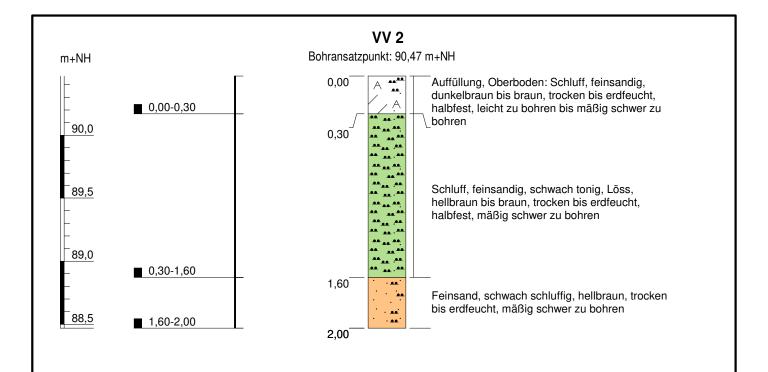
69124 Eppelheim

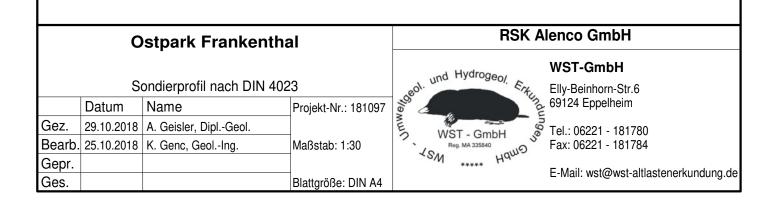
Tel.: 06221 - 181780 Fax: 06221 - 181784

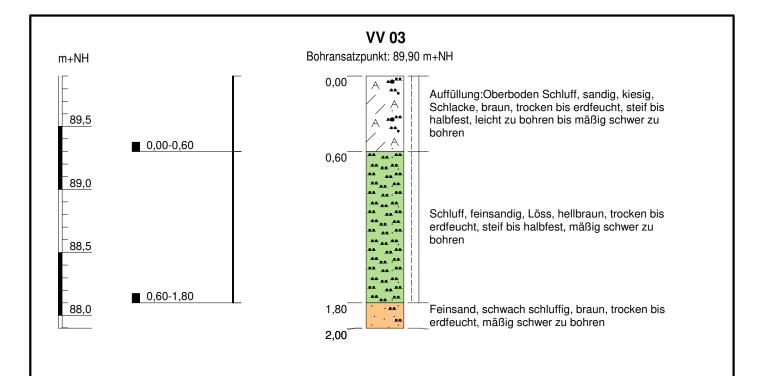
Sondierprofil nach DIN 4023 Sondierprofil nach DIN 4023 Datum Name Projekt-Nr.: 181097 Gez. 29.10.2018 A. Geisler, Dipl.-Geol. Bearb. 25.10.2018 K. Genc, Geol.-Ing. Maßstab: 1:30 Gepr.

Blattgröße: DIN A4

Ges.


WST - GmbH Reg. MA 335840 HQUID


WST-GmbH


RSK Alenco GmbH

Elly-Beinhorn-Str.6 69124 Eppelheim

Tel.: 06221 - 181780 Fax: 06221 - 181784

Schurf 1 91,33 m NN Proben Sand; schluffig, kiesig, Oberboden / künstliche Auffüllung / 0,05 0,05 braun / trocken ·•• Schluff; schwach sandig, Steine, Ziegelbruch / künstliche Auffüllung / graubraun / trocken, halbfest 91,00 m NN 0,35 0,35) (0 • • 0 • 0 Sand; kiesig, schluffig, Steine, schwarze Fremdbestandteile / . ••• künstliche Auffüllung / gelbbraun / trocken Õ 0,80 0,80 0 Sand; kiesig, schluffig, Steine, Schwarzdecke / künstliche Auffüllung / rotbraun / trocken 1,20 1,20 90,00 m NN Schluff; feinsandig, sehr schwach tonig / / braun / trocken, halbfest 2,00 89,00 m NN 88,00 m NN Tiefenangaben Profil und Ausbau bezogen auf GOK Name der Bohrung Schurf 1 Ort der Bohrung Frankenthal Projekt Ostpark Höhe m NN: 91,33 Projekt-Nr. 931 817 Datum: 25.10.2018 RSK Alenco GmbH

Maßstab: 1:20

Bearbeiter

D. Bibus

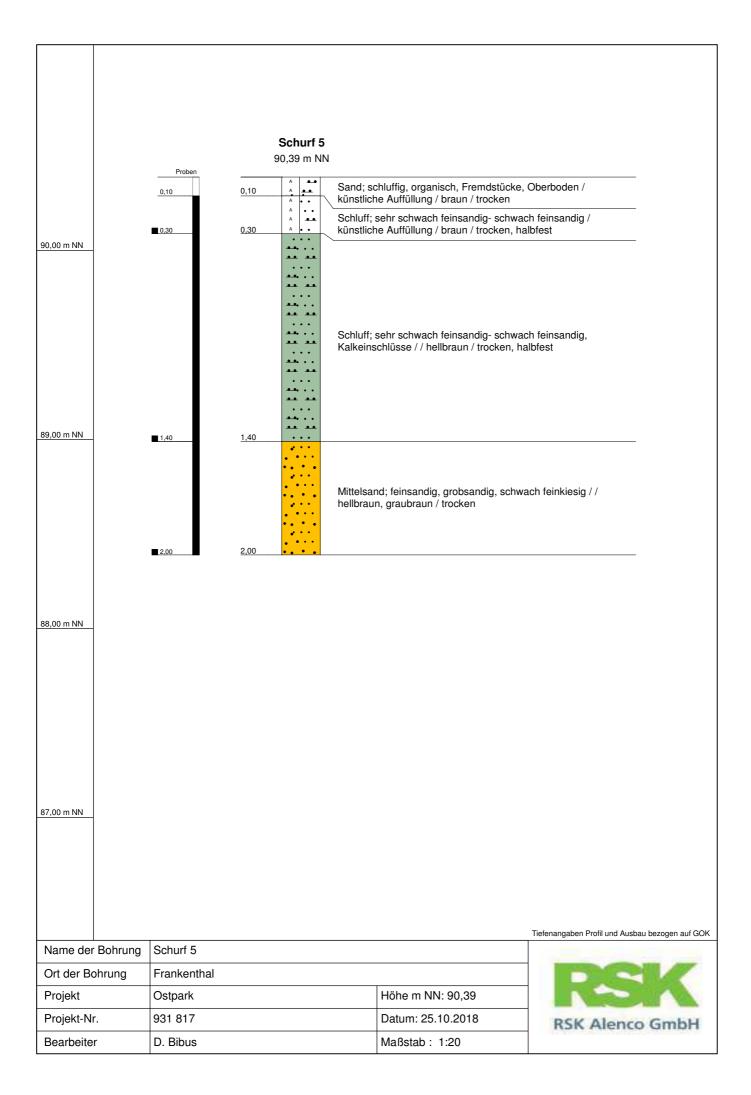
Schurf 2 91,65 m NN Proben Sand; kiesig, sehr schwach schluffig, humos, Oberboden / 0,05 0,05 künstliche Auffüllung / braun / trocken 0,20 Sand; schluffig, kiesig, Steine / künstliche Auffüllung / braun / •:: Sand; schluffig, schwach kiesig, Steine, Bauschutt / künstliche Auffüllung / grau / trocken 0,50 0,50 • •) ဂ • • စ ဂ 91,00 m NN •.• ⊚ Sand; kiesig, schluffig, Ziegelbruch, Steine, Schwarzdecke / •.⊚ Ω künstliche Auffüllung / braun / trocken ••• ••• ••• ••• • • 1,40 1,40 90,00 m NN Schluff; sehr schwach tonig- schwach tonig, feinsandig // dunkelbraun / trocken, halbfest . . 1,90 89,00 m NN 88,00 m NN Tiefenangaben Profil und Ausbau bezogen auf GOK Name der Bohrung Schurf 2 Ort der Bohrung Frankenthal Projekt Ostpark Höhe m NN: 91,65 Projekt-Nr. 931 817 Datum: 25.10.2018 RSK Alenco GmbH Bearbeiter D. Bibus Maßstab: 1:20

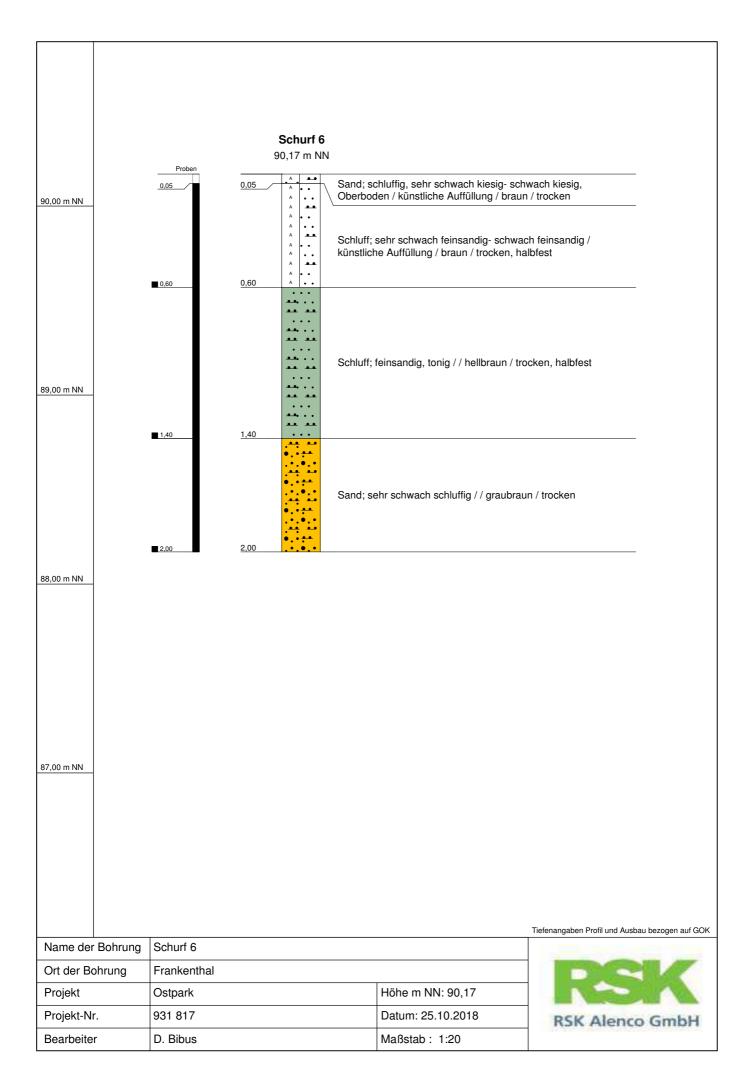
Schurf 3 91,17 m NN Proben Sand; schwach schluffig, schwach kiesig, organisch, 0,05 0,05 Oberboden / künstliche Auffüllung / braun / trocken 91,00 m NN Sand; schwach kiesig, sehr schwach schluffig, Steine, Schwarzdecke / künstliche Auffüllung / braun / trocken, PAK-Geruch 0,50 0,50 • • © . ⊙ o . Sand; kiesig, schluffig, Steine, Schwarzdecke, Schlacke / •.• ⊚ künstliche Auffüllung / hellbraun / trocken, schwacher PAK-Geruch . • . ⊚ 1,10 1,10 90,00 m NN Schluff; schwach tonig, sehr schwach feinsandig / / hellbraun / trocken . . 2,00 89,00 m NN 88,00 m NN Tiefenangaben Profil und Ausbau bezogen auf GOK Name der Bohrung Schurf 3 Ort der Bohrung Frankenthal Projekt Ostpark Höhe m NN: 91,17 Projekt-Nr. 931 817 Datum: 25.10.2018

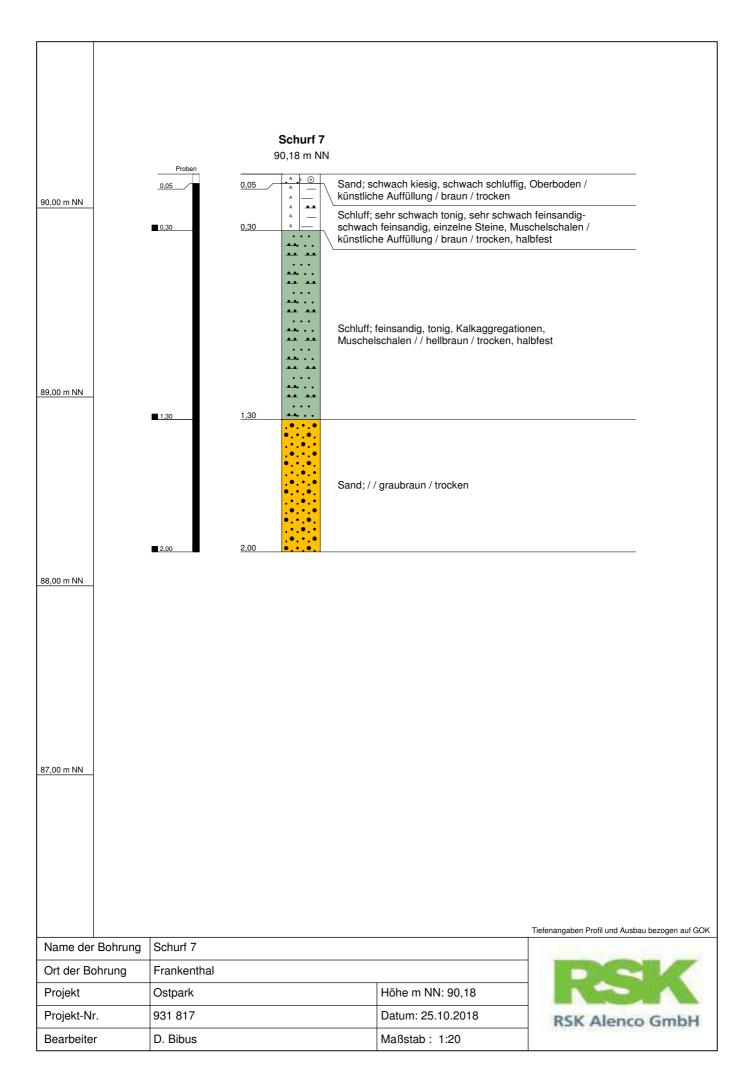
Maßstab: 1:20

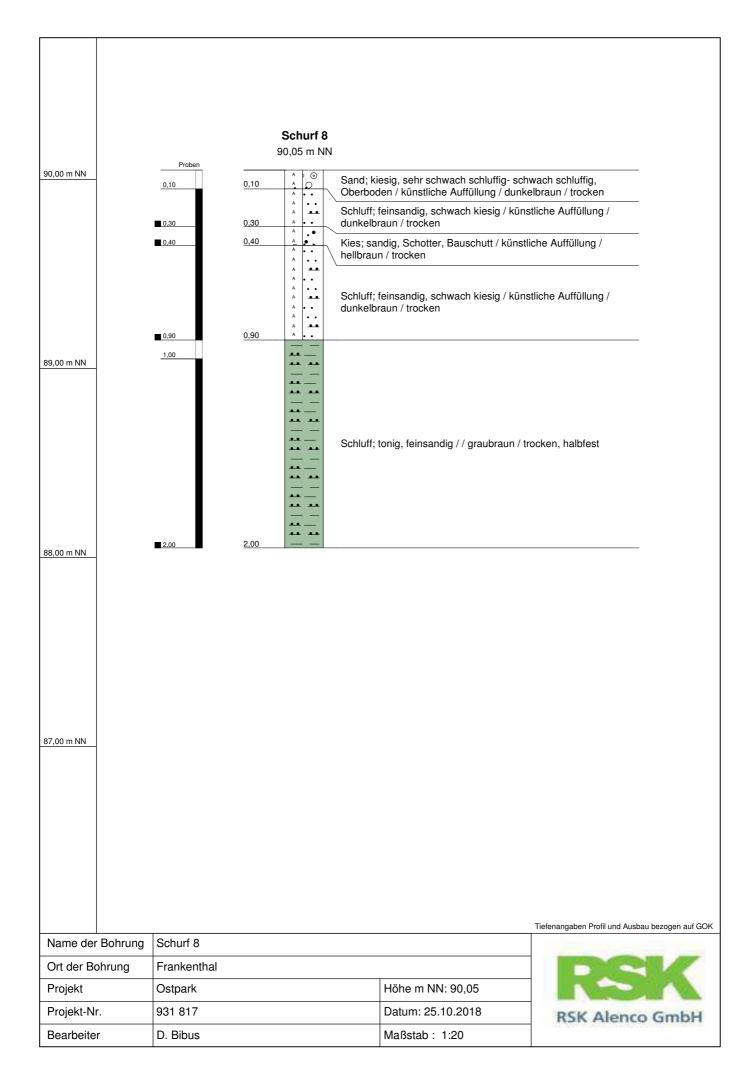
Bearbeiter

D. Bibus

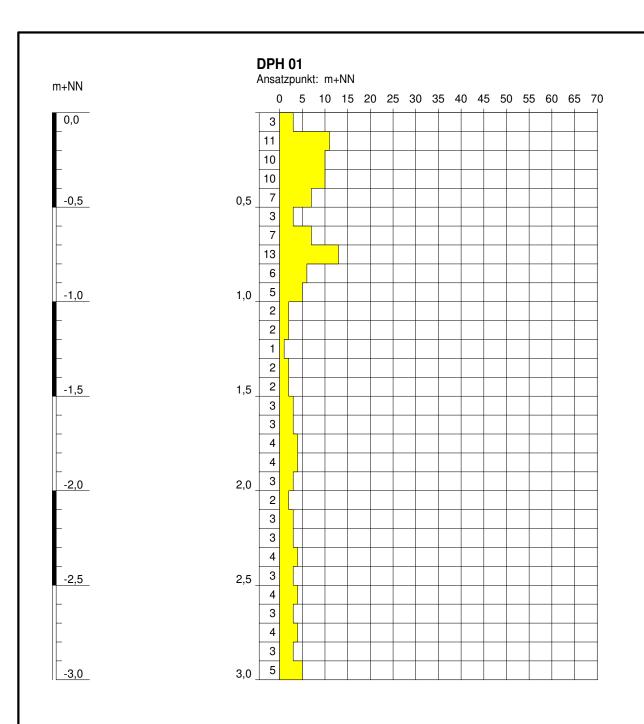

RSK Alenco GmbH


Schurf 4 90,62 m NN Proben Sand; schluffig, organisch, Oberboden / künstliche Auffüllung 0,05 0,05 / braun / trocken ... Schluff; sehr schwach feinsandig, sehr schwach kiesig, einzelne kleine Steine / künstliche Auffüllung / braun / trocken, halbfest 0,50 0,50 90,00 m NN Schluff; feinsandig, schwach tonig, Muschelschalen, Kalkeinschlüsse // hellbraun / trocken, halbfest 1,50 1,50 89,00 m NN Schluff; sehr schwach tonig- schwach tonig, feinsandig, Kalkeinschlüsse // graubraun / trocken, halbfest . . 2,00 88,00 m NN 87,00 m NN Tiefenangaben Profil und Ausbau bezogen auf GOK Name der Bohrung Schurf 4 Ort der Bohrung Frankenthal Projekt Ostpark Höhe m NN: 90,62 Projekt-Nr. 931 817 Datum: 25.10.2018 RSK Alenco GmbH


Maßstab: 1:20


Bearbeiter

D. Bibus



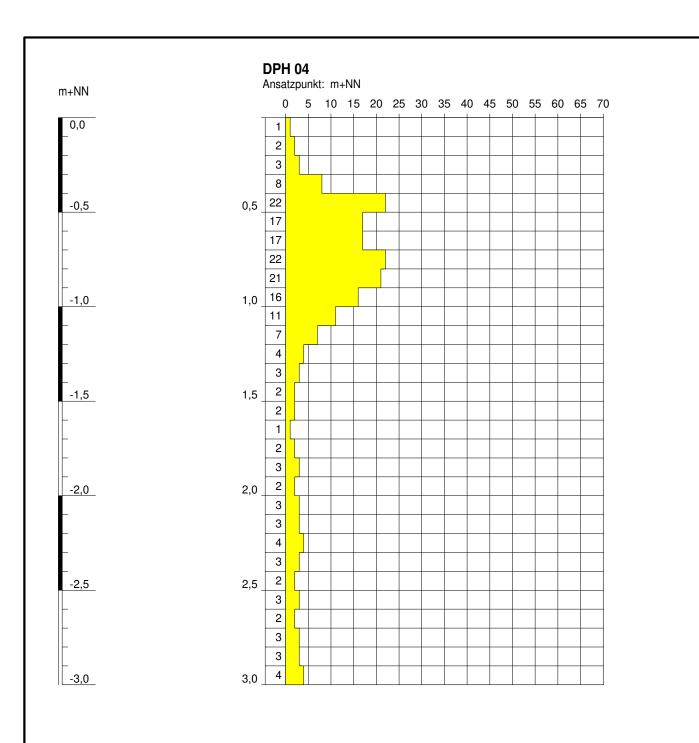
Bericht Orientierende Altlasten- und Baugrunduntersuchung Ostseite des Ostparks Stadtverwaltung Frankenthal Bereich Planen und Bauen, Bericht-Nr. 931817.G01 20.12.2018

Anlage 3 Rammdiagramme

6 Seiten

BV Ostpark FT

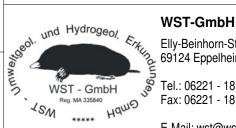
Rammdiagramm nach DIN 4094


	Datum	Name	Projekt-Nr.: 170322
Gez.	06.03.2017	C. Metz	
Bearb.	03.03.2017	M. Hakala, Dipl. Geol.	Maßstab: 1:20
Gepr.			
Ges.			Blattgröße: DIN A4

RSK Alenco GmbH

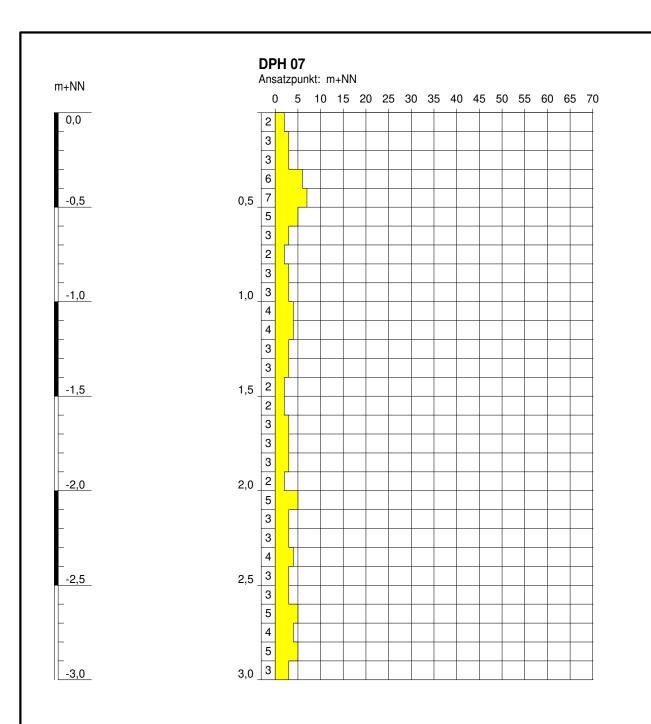
WST-GmbH Elly-Beinhorn-Str.6 69124 Eppelheim

Tel.: 06221 - 181780 Fax: 06221 - 181784



BV Ostpark FT

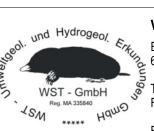
Rammdiagramm nach DIN 4094


	Datum	Name	Projekt-Nr.: 170322
Gez.	06.03.2017	C. Metz	
Bearb.	03.03.2017	M. Hakala, Dipl. Geol.	Maßstab: 1:20
Gepr.			
Ges.			Blattgröße: DIN A4

RSK Alenco GmbH

Elly-Beinhorn-Str.6 69124 Eppelheim

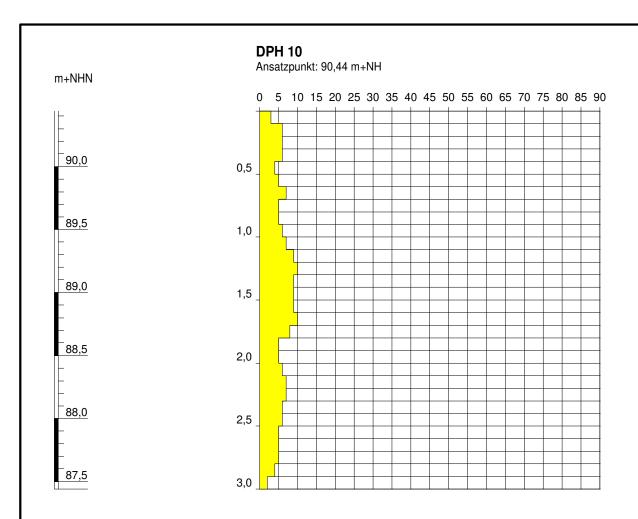
Tel.: 06221 - 181780 Fax: 06221 - 181784



BV Ostpark FT

Rammdiagramm nach DIN 4094

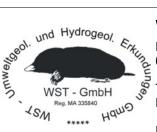
	Datum	Name	Projekt-Nr.: 170322
Gez.	06.03.2017	C. Metz	
Bearb.	03.03.2017	M. Hakala, Dipl. Geol.	Maßstab: 1:20
Gepr.			
Ges.			Blattgröße: DIN A4


RSK Alenco GmbH

WST-GmbH

Elly-Beinhorn-Str.6 69124 Eppelheim

Tel.: 06221 - 181780 Fax: 06221 - 181784

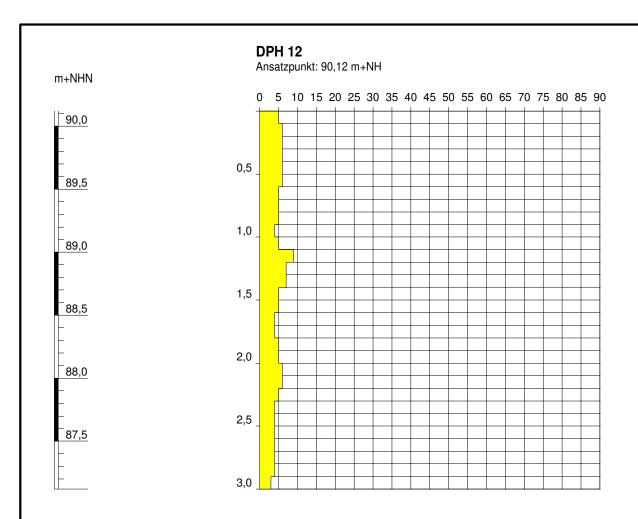


Ostpark Frankenthal

Rammdiagramm nach DIN 4094

	Datum	Name	Projekt-Nr.: 181097
Gez.	29.10.2018	A. Geisler, DiplGeol.	
Bearb.	25.10.2018	K. Genc, GeolIng.	Maßstab: 1:30
Gepr.			
Ges.			Blattgröße: DIN A4

RSK Alenco GmbH



WST-GmbH Elly-Beinhorn-Str.6

69124 Eppelheim

Tel.: 06221 - 181780 Fax: 06221 - 181784

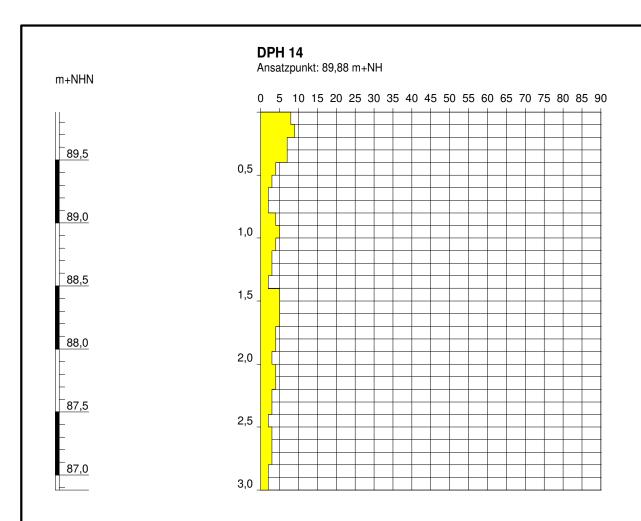
E-Mail: wst@wst-altlastenerkundung.de

Ostpark Frankenthal

Rammdiagramm nach DIN 4094

	Datum	Name	Projekt-Nr.: 181097
Gez.	29.10.2018	A. Geisler, DiplGeol.	
Bearb.	25.10.2018	K. Genc, GeolIng.	Maßstab: 1:30
Gepr.			
Ges.			Blattgröße: DIN A4

RSK Alenco GmbH



WST-GmbH

Elly-Beinhorn-Str.6 69124 Eppelheim

Tel.: 06221 - 181780 Fax: 06221 - 181784

E-Mail: wst@wst-altlastenerkundung.de

Ostpark Frankenthal

Rammdiagramm nach DIN 4094

	Datum	Name	Projekt-Nr.: 181097
Gez.	29.10.2018	A. Geisler, DiplGeol.	
Bearb.	25.10.2018	K. Genc, GeolIng.	Maßstab: 1:30
Gepr.			
Ges.			Blattgröße: DIN A4

RSK Alenco GmbH

WST-GmbH

Elly-Beinhorn-Str.6 69124 Eppelheim

Tel.: 06221 - 181780 Fax: 06221 - 181784

E-Mail: wst@wst-altlastenerkundung.de

Anlage 4 Bestimmung des k_f-Wertes

1 Seite

Zur Durchführung der Versickerungsversuche wurde ein Kunststoffvollrohr eingestellt und der Versickerungsversuch als Bohrloch-Versickerungsversuchen bzw. Open-End Test durchgeführt. Von einer bestimmten Füllhöhe ausgehend wird die Versickerungsrate je Zeiteinheit ermittelt. Die Versuchsdaten und die Auswertung können Anlage 4 entnommen werden.

Bei dieser Versuchsausführung ergibt sich mit unten stehender Formel ein Durchlässigkeitswert k_f. Bei dieser Versuchsdurchführung wird zunächst der Durchfluss Q indirekt ermittelt, um anschließend in die Hauptformel eingesetzt zu werden.

$$Q = A * \frac{DH}{DT}$$

A = Fläche des Bohrloches [cm²]

DH = Differenz Messhöhe zur Ausgangshöhe [cm]

DT = Zeitdifferenz [min] Q = Durchfluss [m³/s]

Eingesetzt in die folgende Formel ergibt sich der Durchlässigkeitsbeiwert k_f für die wassergesättigte Bodenzone:

$$k_f = \frac{Q}{5.5} * r^2 * H$$

k_f = Durchlässigkeitsbeiwert [m/s]

Q = Wasserzugabe/Durchfluss [m³/s]

r = Bohrlochradius [m]

H = Höhe Wassersäule [m]

Anlage 5 Protokolle der Versickerungsversuche

3 Seiten

WST-GmbH, Elly-Beinhorn-Str. 6, 69214 Eppelheim

Projekt: Ostpark Frankenthal

WST-Proj.-Nr: 181097

Ausführung: K. Genc, B. Sc. Geow. / Ing.

VV im ausgebauten Bohrloch (Vollrohr)

Versuch Nr.: 1	VV-1	Versuchstiefe:	2,00	m u. GOK	Open-End-Test in
25.10.201	8				ungesättigter Bodenzone

h = Wassersäule im Rohr [m]	t = Zeit [sek.]	Absenkung im Vollrohr [m]	Q [m³] gesamt	Q [m³/s]		
2,000	0	0	0	0	Mittelwert Q [m³/s]:	7,20E-07
1,920	60	0,080	1,70E-04	2,83E-06		
1,860	120	0,140	2,97E-04	2,12E-06		
1,820	180	0,180	3,82E-04	1,42E-06		
1,800	240	0,200	4,25E-04	7,08E-07	Höhe d. Wassersäule zu	
1,780	300	0,220	4,67E-04		Beginn [m]	2,00
1,750	360	0,250	5,31E-04	1,06E-06	Durchmesser Messrohr [m]:	0,052
1,740	420	0,260	5,52E-04	3,54E-07	1 cm Absenkung = m ³	2,12E-05
1,720	480	0,280	5,95E-04	7,08E-07	1 cm Absenkung = ml	21,24
1,690	540	0,310			Radius Messrohr [m]	0,026
1,670	600	0,330	7,01E-04	7,08E-07	Mittelwert h [m]	1,619
1,660	660	0,340	7,22E-04	3,54E-07		
1,650	720	0,350	7,43E-04	3,54E-07		
1,630	780	0,370	7,86E-04	7,08E-07		
1,620	840	-,		3,54E-07		
1,600	900	0,400				
1,590	960	0,410	8,71E-04	3,54E-07		
1,580	1020	0,420	8,92E-04	3,54E-07		
1,570	1080	0,430	9,13E-04	3,54E-07		
1,550	1140	0,450	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·		
1,540		-,				
1,520	1260	0,480	1,02E-03	7,08E-07		
1,500	1320	0,500	,			
1,480	1380	0,520	1,10E-03	7,08E-07		
1,460		,				
1,440	1500	· · · · · · · · · · · · · · · · · · ·	1,19E-03	· · · · · · · · · · · · · · · · · · ·		
1,430		,		-		
1,420	1620	0,580	1,23E-03	3,54E-07		
1,410		-,				
1,400	1740	0,600	1,27E-03	3,54E-07		
1,390	1800	0,610	1,30E-03	3,54E-07		

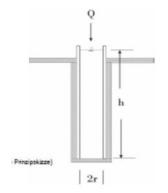
Auswertung (nach Prinz 1977, S. 76/77 2.85.c):

WST-GmbH, Elly-Beinhorn-Str. 6, 69214 Eppelheim

Projekt: Ostpark Frankenthal

WST-Proj.-Nr: 181097

Ausführung: K. Genc, B. Sc. Geow. / Ing.


VV im ausgebauten Bohrloch (Vollrohr)

Versuch Nr.: 1	VV-2	Versuchstiefe:	2,00	m u. GOK	Open-End-Test in
25.10.201	8				ungesättigter Bodenzone

h = Wassersäule im Rohr [m]	t = Zeit [sek.]	Absenkung im Vollrohr [m]	Q [m³] gesamt	Q [m³/s]		
2,000	0	0	0	0	Mittelwert Q [m³/s]:	4,37E-07
1,800	60	0,200	4,25E-04	7,08E-06		
1,780	120	0,220	4,67E-04	7,08E-07		
1,780	180	0,220	4,67E-04	0,00E+00		
1,750	240	0,250	5,31E-04	1,06E-06	Höhe d. Wassersäule zu	
1,740	300	0,260	5,52E-04	3,54E-07	Beginn [m]	2,00
1,730	360	0,270	5,73E-04	3,54E-07	Durchmesser Messrohr [m]:	0,052
1,710	420	0,290	6,16E-04	7,08E-07	1 cm Absenkung = m ³	2,12E-05
1,700	480	0,300	6,37E-04	3,54E-07	1 cm Absenkung = ml	21,24
1,700	540	0,300	6,37E-04	0,00E+00	Radius Messrohr [m]	0,026
1,690	600	0,310	6,58E-04	3,54E-07	Mittelwert h [m]	1,690
1,680	660	0,320	6,80E-04	3,54E-07		
1,680	720	0,320	6,80E-04	0,00E+00		
1,680	780	0,320	6,80E-04	0,00E+00		
1,670	840	0,330	7,01E-04	3,54E-07		
1,670	900	0,330	7,01E-04	0,00E+00		
1,670	960	0,330	7,01E-04	0,00E+00		
1,660	1020	0,340	7,22E-04	3,54E-07		
1,650	1080	0,350	7,43E-04	3,54E-07		
1,650	1140	0,350	7,43E-04	0,00E+00		
1,640	1200	0,360	7,65E-04	3,54E-07		
1,640	1260	0,360	7,65E-04	0,00E+00		
1,640	1320	0,360	7,65E-04	0,00E+00		
1,640	1380	0,360	7,65E-04	0,00E+00		
1,640	1440	0,360	7,65E-04	0,00E+00		
1,640	1500	0,360	7,65E-04	0,00E+00		-
1,630	1560	0,370	7,86E-04	3,54E-07		
1,630	1620	0,370	7,86E-04	0,00E+00		
1,630	1680	0,370	7,86E-04	0,00E+00		
1,630	1740	0,370	7,86E-04	0,00E+00		
1,630	1800	0,370	7,86E-04	0,00E+00		

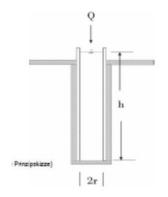
Auswertung (nach Prinz 1977, S. 76/77 2.85.c):

Q [m³/s] Mit: Q = Wasserzugabe r = Radius Messrohr 5,5 x r [m] x h [m] h = Höhe Wassersäule 5,5 = Formelkonstante

WST-GmbH, Elly-Beinhorn-Str. 6, 69214 Eppelheim

Projekt: Ostpark Frankenthal

WST-Proj.-Nr: 181097


Ausführung: K. Genc, B. Sc. Geow. / Ing.

VV im ausgebauten Bohrloch (Vollrohr)

Versuch Nr.: 1	VV-3	Versuchstiefe:	1,93	m u. GOK	Open-End-Test in
25.10.2018	3				ungesättigter Bodenzone

h = Wassersäule im Rohr [m]	t = Zeit [sek.]	Absenkung im Vollrohr [m]	Q [m³] gesamt	Q [m³/s]		
2,000	0	0	0	0	Mittelwert Q [m³/s]:	4,72E-07
1,920	60	0,080	1,70E-04	2,83E-06		
1,850	120	0,150	3,19E-04	2,48E-06		
1,840	180	0,160	3,40E-04	3,54E-07		
1,822	240	0,178	3,78E-04	6,37E-07	Höhe d. Wassersäule zu	
1,820	300	0,180	3,82E-04	7,08E-08	Beginn [m]	2,00
1,810	360	0,190	4,04E-04	3,54E-07	Durchmesser Messrohr [m]:	0,052
1,810	420	0,190	4,04E-04	0,00E+00	1 cm Absenkung = m ³	2,12E-05
1,800	480	0,200	4,25E-04	3,54E-07	1 cm Absenkung = ml	21,24
1,790	540	0,210		·	Radius Messrohr [m]	0,026
1,780	600	0,220	4,67E-04		Mittelwert h [m]	1,739
1,770	660	0,230	4,88E-04	3,54E-07		
1,760	720	0,240	5,10E-04	·		
1,750		-,		3,54E-07		
1,740		-,				
1,730		0,270				
1,720		-,				
1,710		0,290		3,54E-07		
1,700	1080	0,300	· · ·			
1,690	1140	0,310	,			
1,690	1200	0,310				
1,680		-,		·		
1,670		0,330		3,54E-07		
1,660		0,340		· '		
1,650	1440	0,350		3,54E-07		
1,650		0,350				
1,640	1560	0,360		3,54E-07		
1,630		0,370	· · ·			
1,620		0,380	,			
1,610		0,390				
1,600	1800	0,400	8,49E-04	3,54E-07		

Auswertung (nach Prinz 1977, S. 76/77 2.85.c):

Anlage 6 Bodenluftprobenahmeprotokolle

2 Seiten

	Probenahme	<u>eprotok</u> o	<u>oll Boo</u>	<u>denluft</u>			
Varianten nach VDI 3865 Blatt 1. Adsorption auf Aktivkohle pur 2. Adsorption auf Aktivkohle/Me: 3. Adsorption auf XAD-4-Harz, d 4. Kleinmengenentnahme am Bo 5. Direktmessung, punktuell/hori	ktuell/horizontiert <u>/integr</u> ssung mit direkt anzeige liffuser Tiefenbereich ohrlochtiefsten, punktue	endem Prüfrö II/horizontiert	hrchen int <u>/</u> integriere	egrierend (181097 X
Probe: Projekt: Stadt/Gemeinde: Auftraggeber: Probenahmedatum: Witterung/Wetterdaten (Druck/T	Ostpark Frankenthal Frankenthal RSK Alenco GmbH 25.01.2018 emp./rel.Luftfeuchte):	bedeckt/ 102		Landkreis: Auftragneh Uhrzeit: 8°C/ 80%/ s	nmer:	FT WST-GmbH 12:45 indig	
Orientierende Messung: Bodenbeschreibung nach DIN E	Quantitativ Örtliche Ve Lokalisieru	ing Schadsto	dnung:	X X X			
Probenahmestelle: Probenahmeapparatur: Abdichtung: Dichtigkeitsprüfung: Durchmesser Bolu-Sonde [mm] Sondenteilstücke Länge [m]: Totvolumen der Sonde [Liter]: Verhältnis Volumen Sonde/Bohr	SKC Aircheck Sampler Dichtkegel dicht 12 1,2 0,136	Art/Ausführu Bohrwerkzei Durchmesse Ausbautiefe Anzahl [Stck	ug: er Messste der Messs	lle [mm]:		ohrloch/DN 6 hes Bohrgera	
Entnahmeart:	einfach: integrierend (von-bis) : horizontiert:		mehrfach:			punktuell:	
Entnahmetiefe: Bedingungen konstant während	m u. ROK		n u. GOK a	Temperat	ur Boden :		°C
Förderstrom: Pumpzeit vor Probenahme: Abgesaugtes Volumen vor der F Dauer der Absaugung für Probe Probenvolumen: Gesamtes entnommenes Volum	10 Probenahme: 10 nahme: 5	Liter / min min Liter min Liter Liter		Hubzahl B	alkenpume	<u> </u>	
Art der Probensammlung: Adsorptionsröhrchen: Headspace: Direktmessung Prüfröhrchen: Direktmessung PID: Direktmessung Deponiegase:	SKC Anasorb CSC ml Ansyco BM 2000	S N N	Medium: constiges: Messwert: Messwert: CO ₂ : D ₂ :	0,80% 19,80%	CH ₄ : H ₂ S:	0,00% 0,0 ppm	
Probentransport (Ziel/Bedingung Probenlagerung (Ort/Zeitraum/B Probenehmer/Qualifikation: Blindprobe: Bemerkungen:		ŀ	Probentrar keine K. Genc, C	nsport dunk Geol <u>Ing</u> , nein	für AG	für WST	Anzahl:

	Probenahme	eprotoko	oll Boo	denluft	į.		
Varianten nach VDI 3865 Blatt 1. Adsorption auf Aktivkohle pur 2. Adsorption auf Aktivkohle/Me 3. Adsorption auf XAD-4-Harz, o 4. Kleinmengenentnahme am B 5. Direktmessung, punktuell/hor	2: hktuell/horizontiert <u>/integ</u> ssung mit direkt anzeigd liffuser Tiefenbereich ohrlochtiefsten, punktue	rierend über E endem Prüfrö ell/horizontiert	Bohrlochlä hrchen in /integriere	<u>inge</u> tegrierend	über Bohr	-	181097 X
Probe: Projekt: Stadt/Gemeinde: Auftraggeber: Probenahmedatum: Witterung/Wetterdaten (Druck/T	Qualitative Quantitativ	e Zusammens ve Größenord	t/ 1021 hF setzung:	Landkreis Auftragne Uhrzeit: Pa/ 13°C/ S X	hmer:	FT WST-Gmbl 10:00 ach windig	Н
Bodenbeschreibung nach DIN E		erteilung: ung Schadsto s. Bohrproto	•	X	- -		
Probenahmestelle: Probenahmeapparatur: Abdichtung: Dichtigkeitsprüfung: Durchmesser Bolu-Sonde [mm] Sondenteilstücke Länge [m]: Totvolumen der Sonde [Liter]: Verhältnis Volumen Sonde/Bohr	1,2 0,136	Art/Ausführu Bohrwerkzeu Durchmesse Ausbautiefe Anzahl [Stck	ig: r Messste der Mess	elle [mm]:		sohrloch/DN (ches Bohrge - -	
Entnahmeart:	einfach: integrierend (von-bis)	:0 - 3 m	nehrfach:		-	punktuell	:
Entnahmetiefe: Bedingungen konstant während	horizontiert: m u. ROK Probenahme:	Teufen:		Temperat	tur Boden	:	_°C
Förderstrom: Pumpzeit vor Probenahme: Abgesaugtes Volumen vor der F Dauer der Absaugung für Probe Probenvolumen: Gesamtes entnommenes Volum	10 Probenahme: 10 nahme: 5 5	Liter / min min Liter min Liter Liter		Hubzahl E	Balkenpum	e:	-
Art der Probensammlung: Adsorptionsröhrchen: Headspace: Direktmessung Prüfröhrchen: Direktmessung PID: Direktmessung Deponiegase:	SKC Anasorb CSC ml Ansyco BM 2000	S _ N _ (Medium: onstiges: Messwert: Messwert: CO ₂ :		CH₄		
Probentransport (Ziel/Bedingung Probenlagerung (Ort/Zeitraum/E Probenehmer/Qualifikation: Blindprobe: Bemerkungen:		k	Probentrar eine K. Gen <u>c,</u> C	nsport dun Geol <u>Ing</u> ,	kel für AG [für WST	Anzahl:

Anlage 7 Abschätzung der Grundwassergefährdung gemäß ALEX 13

1 Seite

Hinsichtlich der Beurteilung einer Grundwassergefährdung kann nach dem Merkblatt ALEX 13 anhand von Bodenuntersuchungen der Schadstoffaustrag (Gesamtmenge der Schadstoffe, Mobilität) und die Schutzfunktion der ungesättigten Bodenzone abgeschätzt werden. Da bewertungsrelevante Belastungen nur in den Auffüllungen des südlichen Teilstücks festgestellt wurden, konzentriert sich die hier vorgestellte Bewertung auf diesen Teil des Geländes.

Der anzunehmende Grundwasserflurabstand beträgt ca. 3,5-4,0 m.

Die Gesamtmenge der Schadstoffe (hier PAK₁₆) wird als hoch (ca. 1,5 fach über dem Prüfwert gemäß ALEX 13, Anhang 3) und die Mobilität als gering bis mittel eingestuft.

Die unbelastete Grundwasserüberdeckung ist als gering einzustufen. Das Gelände ist unversiegelt. Die Basis der Auffüllung wird in Tiefen von 0,4 bis 1,8 m u. GOK erreicht. Die Durchlässigkeit der Basis der Auffüllung ist gering. Die biologische Abbaubarkeit der PAK ist als gering zu bewerten. Die Schutzfunktion der ungesättigten Bodenzone ist gemäß ALEX 13, Tabelle 1 für die festgestellten PAK als gering einzustufen.

Nach den Beurteilungskriterien des Informationsblattes ALEX 13 ist die Grundwassergefährdung durch PAK wie folgt einzuschätzen:

Mobilität der Schadstoffe: mittel bis gering

Schutzfunktion der ungesättigten Bodenzone: gering
 Gesamtmenge an Schadstoffe: hoch

Anhand der Entscheidungsmatrix nach ALEX 13, Tabelle 2 ist eine Grundwassergefährdung **zu erwarten**. Dies bedeutet, dass ein Anfangsverdacht besteht, die Daten für eine abschließende Bewertung jedoch nicht ausreichen.

Anlage 8 Laborprüfberichte

19 Seiten

görtler analytical services gmbh 🧔 Joh.-Seb.-Bach-Str. 40 💪 D-85591 Vaterstetten

RSK Alenco GmbH Kandel Barthelsmühlring 18 D-76870 Kandel

Prüfbericht V171124

Projekt 934130 Frankenthal Ostpark

Auftraggeber RSK Alenco GmbH Kandel

Auftragsdatum 13.03.2017

Probenart Feststoff

Probenahme 03.03.2017

Probenehmer D. Bibus

Probeneingang 06.03.2017

Prüfzeitraum 06.03.2017 - 20.03.2017

görtler

analytical/services gmbh

I warshorp

Dr. Bruno Schwarzkopf Mitarbeiter QM

Die Prüfbefunde beziehen sich ausschließlich auf die Prüfgegenstände. Die auszugsweise Vervielfältigung des Prüfberichts ist ohne schriftliche Genehmigung der görtler analytical services gmbh nicht zulässig. Untersuchungsstelle ist die görtler analytical services gmbh, D-85591 Vaterstetten.

Wenn nicht anders vereinbart oder fachlich begründet, werden Proben 2 Monate aufbewahrt.

DAKKS

Deutsche
Akkreditierungsstelle
D-PL-14282-01-00

20.03.2017

O Umweltanalytik

Company Lebensmittelanalytik

6 Futtermittelanalytik

© Rückstandsanalytik

RoHS-Analytik

Analytik von Arzneimitteln und pharmazeutischen Produkten

Akkreditiertes Prüflaboratorium DIN EN ISO/IEC 17025:2005

Gegenprobensachverständigen-Prüflabor (PrüfLabV/SAL-BY-G069.02.07)

Zulassung nach dem Arzneimittelgesetz

Untersuchungsstelle nach § 15 TrinkwV: 2001 und § 18 BBodSchG

görtler analytical services gmbh

Johann-Sebastian-Bach-Straße 40 D-85591 Vaterstetten

Telefon +49 8106 2460-0 Telefax +49 8106 2460-60 info@goertler.com www.goertler.com

Geschäftsführung:

Giesa Warthemann, Roland Görtler

HRB München 93447 USt.-IdNr. DE 129 360 902 St.Nr. 114/127/60117

Raiffeisenbank Ottobrunn Kto. 664 448 BLZ 701 694 02 IBAN: DE31 7016 9402 0000 6644 48 BIC: GENODEF1HHK

Kreissparkasse

München Starnberg Ebersberg Kto. 274 168 82 BLZ 702 501 50 IBAN: DE39 7025 0150 0027 4168 82 BIC: BYLADEM1KMS

V171124

Probenbezeichnung				MP 1	KRB 6/0,4-0,5
Probenahme durch				D. Bibus	D. Bibus
Probenahme am				03.03.2017	03.03.2017
Probeneingang				06.03.2017	06.03.2017
Anliefergefäß				4 Gläser + 1 PE	Glas
Parameter	Methode	BG	Einheit	V1704067	V1704068
Probenaufbereitung			-	RETSCH	RETSCH
Trockenrückstand (TR)	DIN EN 14346	0,1	%	88,0	83,1
EOX	DIN 38414-S17	0,5	mg/kg Tr	< 0,50	
Glühverlust des TR	DIN EN 15169	0,1	%	2,1	
TOC	DIN EN 13137	0,1	%	0,86	
Kohlenwasserst., GC (C10-C22)	DIN EN 14039, GC/FID	25	mg/kg TR	29	< 25
Kohlenwasserst., GC (C10-C40)	DIN EN 14039, GC/FID	50	mg/kg TR	130	< 50
Extrahierbare lipophile Stoffe	Extraktion gemäß LAGA KW/04 (DEV H56)	0,02	%	0,047	
Cyanide, gesamt	DIN ISO 11262, DIN EN ISO 14403 (D6)	0,1	mg/kg TR	< 0,10	
Leichtflüchtige aromatische Kohlenwasserstoffe (AKW):					
Benzol	HLUG HB, Bd. 7, Teil 4, Extr. m. MetOH, GC/MS	0,1	mg/kg TR	< 0,10	
Toluol	HLUG HB, Bd. 7, Teil 4, Extr. m. MetOH, GC/MS	0,1	mg/kg TR	< 0,10	
Ethylbenzol	HLUG HB, Bd. 7, Teil 4, Extr. m. MetOH, GC/MS	0,1	mg/kg TR	< 0,10	
Xylole (Summe m, p)	HLUG HB, Bd. 7, Teil 4, Extr. m. MetOH, GC/MS	0,1	mg/kg TR	< 0,10	
o-Xylol	HLUG HB, Bd. 7, Teil 4, Extr. m. MetOH, GC/MS	0,1	mg/kg TR	< 0,10	
Styrol	HLUG HB, Bd. 7, Teil 4, Extr. m. MetOH, GC/MS	0,1	mg/kg TR	< 0,10	
iso-Propylbenzol	HLUG HB, Bd. 7, Teil 4, Extr. m. MetOH, GC/MS	0,1	mg/kg TR	< 0,10	
1,3,5-Trimethylbenzol	HLUG HB, Bd. 7, Teil 4, Extr. m. MetOH, GC/MS	0,1	mg/kg TR	< 0,10	
Summe AKW	HLUG HB, Bd. 7, Teil 4, Extr. m. MetOH, GC/MS		mg/kg TR	n.n.	
Leichtflüchtige halogenierte Kohlenwasserstoffe (LHKW):					
Dichlormethan	HLUG HB, Bd. 7, Teil 4, Extr. m. MetOH, GC/MS	0,1	mg/kg TR	< 0,10	
cis-1,2-Dichlorethen	HLUG HB, Bd. 7, Teil 4, Extr. m. MetOH, GC/MS	0,04	mg/kg TR	< 0,040	
Trichlormethan	HLUG HB, Bd. 7, Teil 4, Extr. m. MetOH, GC/MS	0,04	mg/kg TR	< 0,040	
1,1,1-Trichlorethan	HLUG HB, Bd. 7, Teil 4, Extr. m. MetOH, GC/MS	0,04	mg/kg TR	< 0,040	
Tetrachlormethan	HLUG HB, Bd. 7, Teil 4, Extr. m. MetOH, GC/MS	0,04	mg/kg TR	< 0,040	

Probenbezeichnung				MP 1	KRB 6/0,4-0,5
Probenahme durch				D. Bibus	D. Bibus
Probenahme am				03.03.2017	03.03.2017
Probeneingang				06.03.2017	06.03.2017
Anliefergefäß				4 Gläser + 1 PE	Glas
Parameter	Methode	BG	Einheit	V1704067	V1704068
Trichlorethen	HLUG HB, Bd. 7, Teil 4, Extr. m. MetOH, GC/MS	0,04	mg/kg TR	< 0,040	
Tetrachlorethen	HLUG HB, Bd. 7, Teil 4, Extr. m. MetOH, GC/MS	0,04	mg/kg TR	< 0,040	
Bromoform	HLUG HB, Bd. 7, Teil 4, Extr. m. MetOH, GC/MS	0,1	mg/kg TR	< 0,10	
Summe LHKW	HLUG HB, Bd. 7, Teil 4, Extr. m. MetOH, GC/MS		mg/kg TR	n.n.	
Polycyclische aromatische Kohlenwasserstoffe (PAK):					
Naphthalin	DIN ISO 18287, GC-MS	0,01	mg/kg TR	0,04	0,01
Acenaphthen	DIN ISO 18287, GC-MS	0,01	mg/kg TR	0,05	0,03
Acenaphthylen	DIN ISO 18287, GC-MS	0,01	mg/kg TR	0,36	0,02
Fluoren	DIN ISO 18287, GC-MS	0,01	mg/kg TR	0,16	0,03
Phenanthren	DIN ISO 18287, GC-MS	0,01	mg/kg TR	2,1	0,53
Anthracen	DIN ISO 18287, GC-MS	0,01	mg/kg TR	1,5	0,23
Fluoranthen	DIN ISO 18287, GC-MS	0,01	mg/kg TR	5,8	0,72
Pyren	DIN ISO 18287, GC-MS	0,01	mg/kg TR	4,6	0,58
Benzo(a)anthracen	DIN ISO 18287, GC-MS	0,01	mg/kg TR	4,4	0,45
Chrysen	DIN ISO 18287, GC-MS	0,01	mg/kg TR	3,4	0,33
Benzo(b)fluoranthen	DIN ISO 18287, GC-MS	0,01	mg/kg TR	4,9	0,52
Benzo(k)fluoranthen	DIN ISO 18287, GC-MS	0,01	mg/kg TR	1,8	0,19
Benzo(a)pyren	DIN ISO 18287, GC-MS	0,01	mg/kg TR	3,4	0,37
Dibenzo(a,h)anthracen	DIN ISO 18287, GC-MS	0,01	mg/kg TR	0,55	0,05
Benzo(g,h,i)perylen	DIN ISO 18287, GC-MS	0,01	mg/kg TR	1,9	0,23
Indeno(1,2,3-cd)pyren	DIN ISO 18287, GC-MS	0,01	mg/kg TR	1,7	0,23
Summe PAK (EPA)	DIN ISO 18287, GC-MS		mg/kg TR	37	4,5
PCB 28	DIN EN 15308	0,002	mg/kg TR	< 0,0020	
PCB 52	DIN EN 15308	0,002	mg/kg TR	< 0,0020	
PCB 101	DIN EN 15308	0,002	mg/kg TR	< 0,0020	
PCB 118	DIN EN 15308	0,002	mg/kg TR	< 0,0020	
PCB 138	DIN EN 15308	0,002	mg/kg TR	< 0,0020	
PCB 153	DIN EN 15308	0,002	mg/kg TR	< 0,0020	
PCB 180	DIN EN 15308	0,002	mg/kg TR	< 0,0020	
Summe PCB (7)	DIN EN 15308		mg/kg TR	n.n.	
Metalle:					
Königswasseraufschluss	DIN EN 13657				
Arsen	DIN EN ISO 17294-2 (E29), ICP-MS	1	mg/kg TR	7,1	8,9
Blei	DIN EN ISO 17294-2 (E29), ICP-MS	3	mg/kg TR	92	30
Cadmium	DIN EN ISO 17294-2 (E29), ICP-MS	0,3	mg/kg TR	0,66	< 0,30

Prüfbericht 20.03.2017

V171124

Probenbezeichnung				MP 1	KRB 6/0,4-0,5
Probenahme durch				D. Bibus	D. Bibus
Probenahme am				03.03.2017	03.03.2017
Probeneingang				06.03.2017	06.03.2017
Anliefergefäß				4 Gläser + 1 PE	Glas
Parameter	Methode	BG	Einheit	V1704067	V1704068
Chrom, gesamt	DIN EN ISO 17294-2 (E29), ICP-MS	2	mg/kg TR	23	32
Kupfer	DIN EN ISO 17294-2 (E29), ICP-MS	2	mg/kg TR	80	21
Nickel	DIN EN ISO 17294-2 (E29), ICP-MS	2	mg/kg TR	21	27
Quecksilber	DIN EN ISO 17294-2 (E29), ICP-MS	0,1	mg/kg TR	< 0,10	< 0,10
Thallium	DIN EN ISO 17294-2 (E29), ICP-MS	0,5	mg/kg TR	< 0,50	< 0,50
Zink	DIN EN ISO 17294-2 (E29), ICP-MS	2	mg/kg TR	240	78

Prüfbericht 20.03.2017

V171124

Eluat

Probenbezeichnung				MP 1
Probenahme durch				D. Bibus
Probenahme am				03.03.2017
Probeneingang				06.03.2017
Anliefergefäß				4 Gläser + 1 PE
Parameter	Methode	BG	Einheit	V1704067
Eluatherstellung	DIN EN 12457-4		-	RETSCH
el. Leitfähigkeit (25 °C)	DIN EN 27888 (C8), elektrometrisch	0,1	μS/cm	69
pH-Wert (20 °C)	DIN 38404-C5, elektrometrisch		-	9,2
Chlorid	DIN EN ISO 10304-1 (D20)	0,5	mg/L	0,62
Sulfat	DIN EN ISO 10304-1 (D20)	0,5	mg/L	2,4
Cyanide, gesamt	DIN EN ISO 14403 (D6)	5	μg/L	< 5,0
Phenolindex	DIN EN ISO 14402	10	μg/L	< 10
Metalle:				
Arsen	DIN EN ISO 17294-2 (E29), ICP-MS	5	μg/L	12
Blei	DIN EN ISO 17294-2 (E29), ICP-MS	1	μg/L	23
Cadmium	DIN EN ISO 17294-2 (E29), ICP-MS	1	μg/L	< 1,0
Chrom, gesamt	DIN EN ISO 17294-2 (E29), ICP-MS	2	μg/L	10
Kupfer	DIN EN ISO 17294-2 (E29), ICP-MS	2	μg/L	15
Nickel	DIN EN ISO 17294-2 (E29), ICP-MS	3	μg/L	6,1
Quecksilber	DIN EN ISO 17852	0,2	μg/L	< 0,20
Thallium	DIN EN ISO 17294-2 (E29), ICP-MS	1	μg/L	< 1,0
Zink	DIN EN ISO 17294-2 (E29), ICP-MS	1	μg/L	61

Legende

Komponenten unter der Bestimmungsgrenze (BG) wurden bei der Summenbildung nicht berücksichtigt (Summen gerundet) n.n. = nicht nachweisbar; n.b. = nicht beauftragt

Retsch = Befunde aus der gebrochenen Originalprobe (Probenaufbereitung mit Backenbrecher RETSCH) Fraktion = Befunde aus der Fraktion < 2 mm

Frakt. < 22,4 = Befunde aus der gebrochenen Fraktion < 22,4 mm bzw. Eluatansatz aus der Fraktion < 22,4 mm grob gebrochen = Eluatansatz aus der grob gebrochenen Originalprobe

Originalprobe = Befunde bzw. Eluatansatz aus der Originalprobe

zerkleinert = Befunde bzw. Eluatansatz aus der zerkleinerten Originalprobe

gemahlen = Befunde aus der gemahlenen Originalprobe

görtler analytical services gmbh Joh.-Seb.-Bach-Str. 40 D-85591 Vaterstetten

RSK Alenco GmbH Kandel Barthelsmühlring 18 D-76870 Kandel

Prüfbericht V187059

14.12.2018

Projekt

931 817 Frankenthal Ostpark

Auftraggeber

RSK Alenco GmbH Kandel

Auftragsdatum

10.12.2018

Probenart

Feststoff

Probenahme

25.10.2018

Probenehmer

Bibus

Probeneingang

31.10.2018

Prüfzeitraum

31.10.2018 - 14.12.2018

görtler

analytical services gmbh

Dr. Silvia Ferioli

QMB

Die Prüfbefunde beziehen sich ausschließlich auf die Prüfgegenstände. Die auszugsweise Vervielfältigung des Prüfberichts ist ohne schriftliche Genehmigung der görtler analytical services gmbh nicht zulässig. Untersuchungsstelle ist die görtler analytical services gmbh, D-85591 Vaterstetten.

Wenn nicht anders vereinbart oder fachlich begründet, werden Proben 2 Monate aufbewahrt.

Umweltanalytik

C Lebensmittelanalytik

Rückstandsanalytik

6 RoHS-Analytik

Analytik von Arzneimitteln und pharmazeutischen Produkten

Akkreditiertes Prüflaboratorium DIN EN ISO/IEC 17025:2005

Gegenprobensachverständigen-Prüflabor (PrüfLabV)

Zulassung nach dem Arzneimittelgesetz

Untersuchungsstelle nach § 15 TrinkwV: 2001 und § 18 BBodSchG

görtler analytical services gmbh

Johann-Sebastian-Bach-Straße 40 D-85591 Vaterstetten

Telefon +49 8106 2460-0 Telefax +49 8106 2460-60 info@goertler.com www.goertler.com

Geschäftsführung: Giesa Warthemann, Roland Görtler

HRB München 93447 USt.-IdNr. DE 129 360 902 St.Nr. 114/127/60117

Raiffeisenbank Ottobrunn IBAN: DE31 7016 9402 0000 6644 48 BIC: GENODEF1HHK

Kreissparkasse München Starnberg Ebersberg IBAN: DE39 7025 0150 0027 4168 82 BIC: BYLADEM1KMS

V187059

Probenbezeichnung				MP Auffüllung Schurf 8 0,1-0,9	MP Auffüllung Schurf 4-7 0,05-0,6
Probenahme durch Probenahme am				Bibus 25.10.2018	Bibus 25.10.2018
Probeneingang				31.10.2018	31.10.2018
Anliefergefäß				Eimer	Eimer
Parameter	Methode	BG	Einheit	V1827446	V1827447
Probenaufbereitung			-	Originalprobe	Originalprobe
Trockenrückstand (TR)	DIN EN 14346	0,1	%	91,6	91,0
EOX	DIN 38414-S17	0,5	mg/kg Tr	< 0,50	< 0,50
pH-Wert	DIN ISO 10390		-	7,4	7,4
TOC	DIN EN 13137	0,1	%	1,6	1,7
Kohlenwasserstoffe, GC	DIN ISO 16703, GC/FID	50	mg/kg TR	< 50	< 50
Cyanide, gesamt Polycyclische aromatische Kohlenwasserstoffe (PAK):	DIN EN ISO 14403	0,1	mg/kg TR	< 0,10	< 0,10
Naphthalin	DIN ISO 18287, GC-MS	0,01	mg/kg TR	< 0,01	< 0,01
Acenaphthen	DIN ISO 18287, GC-MS	0,01	mg/kg TR	< 0,01	< 0,01
Acenaphthylen	DIN ISO 18287, GC-MS	0,01	mg/kg TR	< 0,01	< 0,01
Fluoren	DIN ISO 18287, GC-MS	0,01	mg/kg TR	< 0,01	< 0,01
Phenanthren	DIN ISO 18287, GC-MS	0,01	mg/kg TR	0,02	0,02
Anthracen	DIN ISO 18287, GC-MS	0,01	mg/kg TR	0,01	0,01
Fluoranthen	DIN ISO 18287, GC-MS	0,01	mg/kg TR	0,07	0,07
Pyren	DIN ISO 18287, GC-MS	0,01	mg/kg TR	0,05	0,05
Benzo(a)anthracen	DIN ISO 18287, GC-MS	0,01	mg/kg TR	0,02	0,03
Chrysen	DIN ISO 18287, GC-MS	0,01	mg/kg TR	0,04	0,03
Benzo(b)fluoranthen	DIN ISO 18287, GC-MS	0,01	mg/kg TR	0,03	0,03
Benzo(k)fluoranthen	DIN ISO 18287, GC-MS	0,01	mg/kg TR	0,02	0,01
Benzo(a)pyren	DIN ISO 18287, GC-MS	0,01	mg/kg TR	0,02	0,02
Dibenzo(a,h)anthracen	DIN ISO 18287, GC-MS	0,01	mg/kg TR	< 0,01	< 0,01
Benzo(g,h,i)perylen	DIN ISO 18287, GC-MS	0,01	mg/kg TR	< 0,01	< 0,01
Indeno(1,2,3-cd)pyren	DIN ISO 18287, GC-MS	0,01	mg/kg TR	< 0,01	< 0,01
Summe PAK (EPA)	DIN ISO 18287, GC-MS		mg/kg TR	0,29	0,28
PCB 28	DIN EN 15308	0,002	mg/kg TR	< 0,0020	< 0,0020
PCB 52	DIN EN 15308	0,002	mg/kg TR	< 0,0020	< 0,0020
PCB 101	DIN EN 15308	0,002	mg/kg TR	< 0,0020	< 0,0020
PCB 118	DIN EN 15308	0,002	mg/kg TR	< 0,0020	< 0,0020
PCB 138	DIN EN 15308	0,002	mg/kg TR	< 0,0020	< 0,0020
PCB 153	DIN EN 15308	0,002	mg/kg TR	< 0,0020	< 0,0020
PCB 180	DIN EN 15308	0,002	mg/kg TR	< 0,0020	< 0,0020
Summe PCB (7)	DIN EN 15308		mg/kg TR	n.n.	n.n.
Metalle:					
Königswasseraufschluss	DIN EN 13657				

Prüfbericht 14.12.2018

V187059

Probenbezeichnung				MP Auffüllung Schurf 8 0,1-0,9	MP Auffüllung Schurf 4-7 0,05-0,6
Probenahme durch				Bibus	Bibus
Probenahme am				25.10.2018	25.10.2018
Probeneingang				31.10.2018	31.10.2018
Anliefergefäß				Eimer	Eimer
Parameter	Methode	BG	Einheit	V1827446	V1827447
Arsen	DIN EN ISO 17294-2 (E29), ICP-MS	1	mg/kg TR	4,0	8,7
Blei	DIN EN ISO 17294-2 (E29), ICP-MS	3	mg/kg TR	47	24
Cadmium	DIN EN ISO 17294-2 (E29), ICP-MS	0,3	mg/kg TR	< 0,30	< 0,30
Chrom, gesamt	DIN EN ISO 17294-2 (E29), ICP-MS	2	mg/kg TR	11	25
Kupfer	DIN EN ISO 17294-2 (E29), ICP-MS	2	mg/kg TR	11	15
Nickel	DIN EN ISO 17294-2 (E29), ICP-MS	2	mg/kg TR	9,7	21
Quecksilber	DIN EN ISO 17294-2 (E29), ICP-MS	0,1	mg/kg TR	< 0,10	< 0,10
Thallium	DIN EN ISO 17294-2 (E29), ICP-MS	0,4	mg/kg TR	< 0,40	< 0,40
Zink	DIN EN ISO 17294-2 (E29), ICP-MS	2	mg/kg TR	110	80

Prüfbericht 14.12.2018

V187059

Feststoff (Methanolextrakt)

Probenbezeichnung				MP Auffüllung Schurf 8 0,1-0,9	MP Auffüllung Schurf 4-7 0,05-0,6
Probenahme durch				Bibus	Bibus
Probenahme am				25.10.2018	25.10.2018
Probeneingang				31.10.2018	31.10.2018
Anliefergefäß				Eimer	Eimer
Parameter	Methode	BG	Einheit	V1827446	V1827447
Leichtflüchtige aromatische Kohlenwasserstoffe (BTEX):					
Benzol	HLUG HB, Bd. 7, Teil 4, Extr. m. MetOH, GC/MS	0,1	mg/kg TR	< 0,10	< 0,10
Toluol	HLUG HB, Bd. 7, Teil 4, Extr. m. MetOH, GC/MS	0,1	mg/kg TR	< 0,10	< 0,10
Ethylbenzol	HLUG HB, Bd. 7, Teil 4, Extr. m. MetOH, GC/MS	0,1	mg/kg TR	< 0,10	< 0,10
Xylole (Summe m, p)	HLUG HB, Bd. 7, Teil 4, Extr. m. MetOH, GC/MS	0,1	mg/kg TR	< 0,10	< 0,10
o-Xylol	HLUG HB, Bd. 7, Teil 4, Extr. m. MetOH, GC/MS	0,1	mg/kg TR	< 0,10	< 0,10
Summe BTEX	HLUG HB, Bd. 7, Teil 4, Extr. m. MetOH, GC/MS		mg/kg TR	n.n.	n.n.
Dichlormethan	HLUG HB, Bd. 7, Teil 4, Extr. m. MetOH, GC/MS	0,1	mg/kg TR	< 0,10	< 0,10
cis-1,2-Dichlorethen	HLUG HB, Bd. 7, Teil 4, Extr. m. MetOH, GC/MS	0,04	mg/kg TR	< 0,040	< 0,040
Trichlormethan	HLUG HB, Bd. 7, Teil 4, Extr. m. MetOH, GC/MS	0,04	mg/kg TR	< 0,040	< 0,040
1,1,1-Trichlorethan	HLUG HB, Bd. 7, Teil 4, Extr. m. MetOH, GC/MS	0,04	mg/kg TR	< 0,040	< 0,040
Tetrachlormethan	HLUG HB, Bd. 7, Teil 4, Extr. m. MetOH, GC/MS	0,04	mg/kg TR	< 0,040	< 0,040
Trichlorethen	HLUG HB, Bd. 7, Teil 4, Extr. m. MetOH, GC/MS	0,04	mg/kg TR	< 0,040	< 0,040
Tetrachlorethen	HLUG HB, Bd. 7, Teil 4, Extr. m. MetOH, GC/MS	0,04	mg/kg TR	< 0,040	< 0,040
Bromoform	HLUG HB, Bd. 7, Teil 4, Extr. m. MetOH, GC/MS	0,1	mg/kg TR	< 0,10	< 0,10
Summe LHKW	HLUG HB, Bd. 7, Teil 4, Extr. m. MetOH, GC/MS		mg/kg TR	n.n.	n.n.

Eluat

Probenbezeichnung				MP Auffüllung Schurf 8 0,1-0,9	MP Auffüllung Schurf 4-7 0,05-0,6
Probenahme durch				Bibus	Bibus
Probenahme am				25.10.2018	25.10.2018
Probeneingang				31.10.2018	31.10.2018
Anliefergefäß				Eimer	Eimer
Parameter	Methode	BG	Einheit	V1827446	V1827447
Eluatherstellung	DIN EN 12457-4		-	Originalprobe	Originalprobe
el. Leitfähigkeit (25 °C)	DIN EN 27888 (C8), elektrometrisch	0,1	μS/cm	269	229
pH-Wert (20 °C)	DIN 38404-C5, elektrometrisch		-	7,4	7,5
Chlorid	DIN EN ISO 10304-1 (D20) 2009-07	0,5	mg/L	< 0,50	< 0,50
Sulfat	DIN EN ISO 10304-1 (D20) 2009-07	0,5	mg/L	0,96	< 0,50
Cyanide, gesamt	DIN EN ISO 14403	5	μg/L	< 5,0	< 5,0
Phenolindex	DIN EN ISO 14402	10	μg/L	< 10	< 10
Metalle:					
Arsen	DIN EN ISO 17294-2 (E29), ICP-MS	5	μg/L	< 5,0	< 5,0
Blei	DIN EN ISO 17294-2 (E29), ICP-MS	1	μg/L	< 1,0	1,4
Cadmium	DIN EN ISO 17294-2 (E29), ICP-MS	1	μg/L	< 1,0	< 1,0
Chrom, gesamt	DIN EN ISO 17294-2 (E29), ICP-MS	2	μg/L	< 2,0	< 2,0
Kupfer	DIN EN ISO 17294-2 (E29), ICP-MS	2	μg/L	12	15
Nickel	DIN EN ISO 17294-2 (E29), ICP-MS	3	μg/L	< 3,0	< 3,0
Quecksilber	DIN EN ISO 17294-2 (E29), ICP-MS	0,2	μg/L	< 0,20	< 0,20
Thallium	DIN EN ISO 17294-2 (E29), ICP-MS	1	μg/L	< 1,0	< 1,0
Zink	DIN EN ISO 17294-2 (E29), ICP-MS	1	μg/L	12	16

Legende

Komponenten unter der Bestimmungsgrenze (BG) wurden bei der Summenbildung nicht berücksichtigt (Summen gerundet) n.n. = nicht nachweisbar; n.b. = nicht beauftragt

Retsch = Befunde aus der gebrochenen Originalprobe (Probenaufbereitung mit Backenbrecher RETSCH)

Fraktion = Befunde aus der Fraktion < 2 mm

Frakt. < 22,4 = Befunde aus der gebrochenen Fraktion < 22,4 mm bzw. Eluatansatz aus der Fraktion < 22,4 mm

grob gebrochen = Eluatansatz aus der grob gebrochenen Originalprobe

Originalprobe = Befunde bzw. Eluatansatz aus der Originalprobe

zerkleinert = Befunde bzw. Eluatansatz aus der zerkleinerten Originalprobe

gemahlen = Befunde aus der gemahlenen Originalprobe

görtler analytical services gmbh Joh.-Seb.-Bach-Str. 40 D-85591 Vaterstetten

RSK Alenco GmbH Kandel Barthelsmühlring 18 D-76870 Kandel

Prüfbericht V186117

05.11.2018

Projekt

931817 Frankenthal Ostpark

Auftraggeber

RSK Alenco GmbH Kandel

Auftragsdatum

24.10.2018

Probenart

Feststoff

Probenahme

24.10.2018

Probenehmer

Wäsch

Probeneingang

25.10.2018

Prüfzeitraum

25.10.2018 - 02.11.2018

görtler analytical/services gmbh

(warshing

Dr. Bruno Schwarzkopf Mitarbeiter QM

Die Prüfbefunde beziehen sich ausschließlich auf die Prüfgegenstände. Die auszugsweise Vervielfältigung des Prüfberichts ist ohne schriftliche Genehmigung der görtler analytical services gmbh nicht zulässig. Untersuchungsstelle ist die görtler analytical services gmbh, D-85591 Vaterstetten. Wenn nicht anders vereinbart oder fachlich begründet, werden Proben 2 Monate aufbewahrt.

Umweltanalytik

Co Lebensmittelanalytik

Rückstandsanalytik

6 RoHS-Analytik

 Analytik von Arzneimitteln und pharmazeutischen Produkten

Akkreditiertes Prüflaboratorium DIN EN ISO/IEC 17025:2005

Gegenprobensachverständigen-Prüflabor (PrüfLabV)

Zulassung nach dem Arzneimittelgesetz

Untersuchungsstelle nach § 15 TrinkwV: 2001 und § 18 BBodSchG

görtler analytical services gmbh

Johann-Sebastian-Bach-Straße 40 D-85591 Vaterstetten

Telefon +49 8106 2460-0 Telefax +49 8106 2460-60 info@goertler.com www.goertler.com

Geschäftsführung: Giesa Warthemann, Roland Görtler

HRB München 93447 USt.-IdNr. DE 129 360 902 St.Nr. 114/127/60117

Raiffeisenbank Ottobrunn IBAN: DE31 7016 9402 0000 6644 48 BIC: GENODEF1HHK

Kreissparkasse München Starnberg Ebersberg IBAN: DE39 7025 0150 0027 4168 82 BIC: BYLADEM1KMS

Prüfbericht V186117 05.11.2018

Gortler® analytical services

Probenbezeichnung				MP Oberboden	MP Oberboden	MP Oberboden
Probenahme durch				Ostpark 1 S Wäsch	Ostpark 2 M Wäsch	Ostpark 3 N Wäsch
Probenahme am				24.10.2018	24.10.2018	24.10.2018
Probeneingang				25.10.2018	25.10.2018	25.10.2018
Anliefergefäß				Eimer	Eimer	Eimer
Parameter	Methode	BG	Einheit	V1826778	V1826779	V1826780
Probenaufbereitung			-	Frakt. < 2	Frakt. < 2	Frakt. < 2
Trockenrückstand (TR)	DIN EN 14346	0,1	%	92,6	100,0	100,0
Polycyclische aromatische Kohlenwasserstoffe (PAK):						
Naphthalin	DIN ISO 18287, GC-MS	0,01	mg/kg TR	< 0,01	< 0,01	< 0,01
Acenaphthen	DIN ISO 18287, GC-MS	0,01	mg/kg TR	< 0,01	< 0,01	< 0,01
Acenaphthylen	DIN ISO 18287, GC-MS	0,01	mg/kg TR	0,04	< 0,01	0,02
Fluoren	DIN ISO 18287, GC-MS	0,01	mg/kg TR	< 0,01	< 0,01	< 0,01
Phenanthren	DIN ISO 18287, GC-MS	0,01	mg/kg TR	0,07	0,04	0,04
Anthracen	DIN ISO 18287, GC-MS	0,01	mg/kg TR	0,06	0,02	0,02
Fluoranthen	DIN ISO 18287, GC-MS	0,01	mg/kg TR	0,31	0,10	0,11
Pyren	DIN ISO 18287, GC-MS	0,01	mg/kg TR	0,21	0,06	0,07
Benzo(a)anthracen	DIN ISO 18287, GC-MS	0,01	mg/kg TR	0,12	0,03	0,04
Chrysen	DIN ISO 18287, GC-MS	0,01	mg/kg TR	0,14	0,03	0,04
Benzo(b)fluoranthen	DIN ISO 18287, GC-MS	0,01	mg/kg TR	0,13	0,04	0,04
Benzo(k)fluoranthen	DIN ISO 18287, GC-MS	0,01	mg/kg TR	0,05	< 0,01	0,01
Benzo(a)pyren	DIN ISO 18287, GC-MS	0,01	mg/kg TR	0,09	0,02	0,03
Dibenzo(a,h)anthracen	DIN ISO 18287, GC-MS	0,01	mg/kg TR	< 0,01	< 0,01	< 0,01
Benzo(g,h,i)perylen	DIN ISO 18287, GC-MS	0,01	mg/kg TR	0,03	< 0,01	< 0,01
Indeno(1,2,3-cd)pyren	DIN ISO 18287, GC-MS	0,01	mg/kg TR	0,02	< 0,01	< 0,01
Summe PAK (EPA)	DIN ISO 18287, GC-MS		mg/kg TR	1,3	0,33	0,43
PCB 28	DIN EN 15308	0,002	mg/kg TR	< 0,0020	< 0,0020	< 0,0020
PCB 52	DIN EN 15308	0,002	mg/kg TR	< 0,0020	< 0,0020	< 0,0020
PCB 101	DIN EN 15308	0,002	mg/kg TR	< 0,0020	< 0,0020	< 0,0020
PCB 118	DIN EN 15308	0,002	mg/kg TR	< 0,0020	< 0,0020	< 0,0020
PCB 138	DIN EN 15308	0,002	mg/kg TR	0,0023	< 0,0020	< 0,0020
PCB 153	DIN EN 15308	0,002	mg/kg TR	< 0,0020	< 0,0020	< 0,0020
PCB 180	DIN EN 15308	0,002	mg/kg TR	< 0,0020	< 0,0020	< 0,0020
Summe PCB (7)	DIN EN 15308		mg/kg TR	0,0023	n.n.	n.n.
Metalle:						
Königswasseraufschluss	DIN EN 13657					
Arsen	DIN EN ISO 17294-2 (E29), ICP-MS	1	mg/kg TR	7,8	8,8	16
Blei	DIN EN ISO 17294-2 (E29), ICP-MS	3	mg/kg TR	51	38	46
Cadmium	DIN EN ISO 17294-2 (E29), ICP-MS	0,3	mg/kg TR	0,35	< 0,30	0,33
Chrom, gesamt	DIN EN ISO 17294-2 (E29), ICP-MS	2	mg/kg TR	25	27	25

Prüfbericht 05.11.2018

V186117

Feststoff

Probenbezeichnung				MP Oberboden Ostpark 1 S	MP Oberboden Ostpark 2 M	MP Oberboden Ostpark 3 N
Probenahme durch				Wäsch	Wäsch	Wäsch
Probenahme am				24.10.2018	24.10.2018	24.10.2018
Probeneingang				25.10.2018	25.10.2018	25.10.2018
Anliefergefäß				Eimer	Eimer	Eimer
Parameter	Methode	BG	Einheit	V1826778	V1826779	V1826780
Kupfer	DIN EN ISO 17294-2 (E29), ICP-MS	2	mg/kg TR	36	18	25
Nickel	DIN EN ISO 17294-2 (E29), ICP-MS	2	mg/kg TR	20	22	18
Quecksilber	DIN EN ISO 17294-2 (E29), ICP-MS	0,1	mg/kg TR	0,12	0,11	0,10
Zink	DIN EN ISO 17294-2 (E29), ICP-MS	2	mg/kg TR	140	89	100

Legende

Komponenten unter der Bestimmungsgrenze (BG) wurden bei der Summenbildung nicht berücksichtigt (Summen gerundet) n.n. = nicht nachweisbar; n.b. = nicht beauftragt

Retsch = Befunde aus der gebrochenen Originalprobe (Probenaufbereitung mit Backenbrecher RETSCH)

Fraktion = Befunde aus der Fraktion < 2 mm

Frakt. < 22,4 = Befunde aus der gebrochenen Fraktion < 22,4 mm bzw. Eluatansatz aus der Fraktion < 22,4 mm

grob gebrochen = Eluatansatz aus der grob gebrochenen Originalprobe

Originalprobe = Befunde bzw. Eluatansatz aus der Originalprobe

zerkleinert = Befunde bzw. Eluatansatz aus der zerkleinerten Originalprobe

gemahlen = Befunde aus der gemahlenen Originalprobe

görtler analytical services gmbh Joh.-Seb.-Bach-Str. 40 D-85591 Vaterstetten

RSK Alenco GmbH Kandel Barthelsmühlring 18 D-76870 Kandel

Prüfbericht V186232

12.11.2018

Projekt

931817 Frankenthal Ostpark

Auftraggeber

RSK Alenco GmbH Kandel

Auftragsdatum

30.10.2018

Probenart

Feststoff

Probenahme

25.10.2018

Probenehmer

Bibus

Probeneingang

31.10.2018

Prüfzeitraum

31.10.2018 - 12.11.2018

görtler analytical services gmbh

B.Sc.Tobias Wegner Stellvertretender Laborleiter

Die Prüfbefunde beziehen sich ausschließlich auf die Prüfgegenstände. Die auszugsweise Vervielfältigung des Prüfberichts ist ohne schriftliche Genehmigung der görtler analytical services gmbh nicht zulässig. Untersuchungsstelle ist die görtler analytical services gmbh, D-85591 Vaterstetten.

Wenn nicht anders vereinbart oder fachlich begründet, werden Proben 2 Monate aufbewahrt.

DAKKS

Deutsche
Akkreditierungsstelle
D-PL-14282-01-00

Umweltanalytik

Control Lebensmittelanalytik

Rückstandsanalytik

RoHS-Analytik

 Analytik von Arzneimitteln und pharmazeutischen Produkten

Akkreditiertes Prüflaboratorium DIN EN ISO/IEC 17025:2005

Gegenprobensachverständigen-Prüflabor (PrüfLabV)

Zulassung nach dem Arzneimittelgesetz

Untersuchungsstelle nach § 15 TrinkwV: 2001 und § 18 BBodSchG

görtler analytical services gmbh

Johann-Sebastian-Bach-Straße 40 D-85591 Vaterstetten

Telefon +49 8106 2460-0 Telefax +49 8106 2460-60 info@goertler.com www.goertler.com

Geschäftsführung: Giesa Warthemann, Roland Görtler

HRB München 93447 USt.-IdNr. DE 129 360 902 St.Nr. 114/127/60117

Raiffeisenbank Ottobrunn IBAN: DE31 7016 9402 0000 6644 48 BIC: GENODEF1HHK

Kreissparkasse München Starnberg Ebersberg IBAN: DE39 7025 0150 0027 4168 82 BIC: BYLADEM1KMS

Probenbezeichnung				MP Schluff Schurf 4-7
Probenahme durch				0,3-1,5 Bibus
Probenahme am				25.10.2018
Probeneingang				31.10.2018
Anliefergefäß				Eimer
Parameter	Methode	BG	Einheit	V1827273
Probenaufbereitung			-	Originalprobe
Trockenrückstand (TR)	DIN EN 14346	0,1	%	91,2
Kohlenwasserstoffe, GC	DIN ISO 16703, GC/FID	50	mg/kg TR	< 50
Polycyclische aromatische Kohlenwasserstoffe (PAK):				
Naphthalin	DIN ISO 18287, GC-MS	0,01	mg/kg TR	< 0,01
Acenaphthen	DIN ISO 18287, GC-MS	0,01	mg/kg TR	< 0,01
Acenaphthylen	DIN ISO 18287, GC-MS	0,01	mg/kg TR	< 0,01
Fluoren	DIN ISO 18287, GC-MS	0,01	mg/kg TR	< 0,01
Phenanthren	DIN ISO 18287, GC-MS	0,01	mg/kg TR	< 0,01
Anthracen	DIN ISO 18287, GC-MS	0,01	mg/kg TR	< 0,01
Fluoranthen	DIN ISO 18287, GC-MS	0,01	mg/kg TR	< 0,01
Pyren	DIN ISO 18287, GC-MS	0,01	mg/kg TR	< 0,01
Benzo(a)anthracen	DIN ISO 18287, GC-MS	0,01	mg/kg TR	< 0,01
Chrysen	DIN ISO 18287, GC-MS	0,01	mg/kg TR	< 0,01
Benzo(b)fluoranthen	DIN ISO 18287, GC-MS	0,01	mg/kg TR	< 0,01
Benzo(k)fluoranthen	DIN ISO 18287, GC-MS	0,01	mg/kg TR	< 0,01
Benzo(a)pyren	DIN ISO 18287, GC-MS	0,01	mg/kg TR	< 0,01
Dibenzo(a,h)anthracen	DIN ISO 18287, GC-MS	0,01	mg/kg TR	< 0,01
Benzo(g,h,i)perylen	DIN ISO 18287, GC-MS	0,01	mg/kg TR	< 0,01
Indeno(1,2,3-cd)pyren	DIN ISO 18287, GC-MS	0,01	mg/kg TR	< 0,01
Summe PAK (EPA)	DIN ISO 18287, GC-MS		mg/kg TR	n.n.
PCB 28	DIN EN 15308	0,002	mg/kg TR	< 0,0020
PCB 52	DIN EN 15308	0,002	mg/kg TR	< 0,0020
PCB 101	DIN EN 15308	0,002	mg/kg TR	0,0022
PCB 118	DIN EN 15308	0,002	mg/kg TR	0,0028
PCB 138	DIN EN 15308	0,002	mg/kg TR	< 0,0020
PCB 153	DIN EN 15308	0,002	mg/kg TR	< 0,0020
PCB 180	DIN EN 15308	0,002	mg/kg TR	< 0,0020
Summe PCB (7)	DIN EN 15308		mg/kg TR	0,0050
Metalle:				
Königswasseraufschluss	DIN EN 13657			
Arsen	DIN EN ISO 17294-2 (E29), ICP-MS	1	mg/kg TR	3,3
Blei	DIN EN ISO 17294-2 (E29), ICP-MS	3	mg/kg TR	18
Cadmium	DIN EN ISO 17294-2 (E29), ICP-MS	0,3	mg/kg TR	< 0,30
Chrom, gesamt	DIN EN ISO 17294-2 (E29), ICP-MS	2	mg/kg TR	9,9

Prüfbericht 12.11.2018

V186232

Feststoff

Probenbezeichnung				MP Schluff Schurf 4-7 0,3-1,5
Probenahme durch				Bibus
Probenahme am				25.10.2018
Probeneingang				31.10.2018
Anliefergefäß				Eimer
Parameter	Methode	BG	Einheit	V1827273
Kupfer	DIN EN ISO 17294-2 (E29), ICP-MS	2	mg/kg TR	6,6
Nickel	DIN EN ISO 17294-2 (E29), ICP-MS	2	mg/kg TR	5,7
Quecksilber	DIN EN ISO 17294-2 (E29), ICP-MS	0,1	mg/kg TR	< 0,10
Zink	DIN EN ISO 17294-2 (E29), ICP-MS	2	mg/kg TR	110

Legende

Komponenten unter der Bestimmungsgrenze (BG) wurden bei der Summenbildung nicht berücksichtigt (Summen gerundet) n.n. = nicht nachweisbar; n.b. = nicht beauftragt

Retsch = Befunde aus der gebrochenen Originalprobe (Probenaufbereitung mit Backenbrecher RETSCH) Fraktion = Befunde aus der Fraktion < 2 mm

Frakt. < 22,4 = Befunde aus der gebrochenen Fraktion < 22,4 mm bzw. Eluatansatz aus der Fraktion < 22,4 mm grob gebrochen = Eluatansatz aus der grob gebrochenen Originalprobe
Originalprobe = Befunde bzw. Eluatansatz aus der Originalprobe

zerkleinert = Befunde bzw. Eluatansatz aus der zerkleinerten Originalprobe gemahlen = Befunde aus der gemahlenen Originalprobe

görtler analytical services gmbh Joh.-Seb.-Bach-Str. 40 D-85591 Vaterstetten

RSK Alenco GmbH Kandel Barthelsmühlring 18 D-76870 Kandel

Prüfbericht V186230

09.11.2018

Projekt

931817 Frankenthal Ostpark

Auftraggeber

RSK Alenco GmbH Kandel

Auftragsdatum

30.10.2018

Probenart

Bodenluft

Probenahme

25.10.2018

Probenehmer

WST

Probeneingang

31.10.2018

Prüfzeitraum

31.10.2018 - 05.11.2018

görtler analytical services gmbh

B.Sc.Tobias Wegner Stellvertretender Laborleiter

Die Prüfbefunde beziehen sich ausschließlich auf die Prüfgegenstände. Die auszugsweise Vervielfältigung des Prüfberichts ist ohne schriftliche Genehmigung der görtler analytical services gmbh nicht zulässig. Untersuchungsstelle ist die görtler analytical services gmbh, D-85591 Vaterstetten.

Wenn nicht anders vereinbart oder fachlich begründet, werden Proben 2 Monate aufbewahrt.

Umweltanalytik

Co Lebensmittelanalytik

Rückstandsanalytik

RoHS-Analytik

 Analytik von Arzneimitteln und pharmazeutischen Produkten

Akkreditiertes Prüflaboratorium DIN EN ISO/IEC 17025:2005

Gegenprobensachverständigen-Prüflabor (PrüfLabV)

Zulassung nach dem Arzneimittelgesetz

Untersuchungsstelle nach § 15 TrinkwV: 2001 und § 18 BBodSchG

görtler analytical services gmbh

Johann-Sebastian-Bach-Straße 40 D-85591 Vaterstetten

Telefon +49 8106 2460-0 Telefax +49 8106 2460-60 info@goertler.com www.goertler.com

Geschäftsführung: Giesa Warthemann, Roland Görtler

HRB München 93447 USt.-IdNr. DE 129 360 902 St.Nr. 114/127/60117

Raiffeisenbank Ottobrunn IBAN: DE31 7016 9402 0000 6644 48 BIC: GENODEF1HHK

Kreissparkasse München Starnberg Ebersberg IBAN: DE39 7025 0150 0027 4168 82 BIC: BYLADEM1KMS

Bodenluft

Probenbezeichnung				KRB 9 Bolu 5L
Probenahme durch Probenahme am				WST 25.10.2018
Probeneingang				31.10.2018
Anliefergefäß				AKR
Parameter	Methode	BG	Einheit	V1827270
Probenahmevolumen			L	5
Benzol	GC/MS, Aktivkohleröhrchen	0,2	mg/m³	0,48
Toluol	GC/MS, Aktivkohleröhrchen	0,2	mg/m³	2,4
Ethylbenzol	GC/MS, Aktivkohleröhrchen	0,2	mg/m³	< 0,20
Xylole (Summe m, p)	GC/MS, Aktivkohleröhrchen	0,2	mg/m³	0,47
o-Xylol	GC/MS, Aktivkohleröhrchen	0,2	mg/m³	< 0,20
Styrol	GC/MS, Aktivkohleröhrchen	0,2	mg/m³	< 0,20
Summe BTEX	GC/MS, Aktivkohleröhrchen		mg/m³	3,3
Dichlormethan	GC/MS, Aktivkohleröhrchen	0,2	mg/m³	< 0,20
cis-1,2-Dichlorethen	GC/MS, Aktivkohleröhrchen	0,2	mg/m³	< 0,20
trans-1,2-Dichlorethen	GC/MS, Aktivkohleröhrchen	0,2	mg/m³	< 0,20
Trichlormethan	GC/MS, Aktivkohleröhrchen	0,2	mg/m³	< 0,20
1,1,1-Trichlorethan	GC/MS, Aktivkohleröhrchen	0,2	mg/m³	< 0,20
Tetrachlormethan	GC/MS, Aktivkohleröhrchen	0,2	mg/m³	< 0,20
Trichlorethen	GC/MS, Aktivkohleröhrchen	0,2	mg/m³	< 0,20
Tetrachlorethen	GC/MS, Aktivkohleröhrchen	0,2	mg/m³	< 0,20
Trichlorfluormethan (R11)	GC/MS, Aktivkohleröhrchen	0,2	mg/m³	< 0,20
1,1,2-Trichlortrifluorethan (R113)	GC/MS, Aktivkohleröhrchen	0,2	mg/m³	< 0,20
Bromdichlormethan	GC/MS, Aktivkohleröhrchen	0,2	mg/m³	< 0,20
Dibromchlormethan	GC/MS, Aktivkohleröhrchen	0,2	mg/m³	< 0,20
1,1-Dichlorethan	GC/MS, Aktivkohleröhrchen	0,2	mg/m³	< 0,20
1,2-Dichlorethan	GC/MS, Aktivkohleröhrchen	0,2	mg/m³	< 0,20
1,1-Dichlorethen	GC/MS, Aktivkohleröhrchen	0,2	mg/m³	< 0,20
Bromoform	GC/MS, Aktivkohleröhrchen	0,2	mg/m³	< 0,20
Vinylchlorid	GC/MS, Aktivkohleröhrchen	0,2	mg/m³	< 0,20

Prüfbericht V186230

09.11.2018

Bodenluft

Probenbezeichnung Probenahme durch				KRB 9 Bolu 5L WST
Probenahme am				25.10.2018
Probeneingang				31.10.2018
Anliefergefäß				AKR
Parameter	Methode	BG	Einheit	V1827270
Summe LHKW	GC/MS, Aktivkohleröhrchen		mg/m³	n.n.

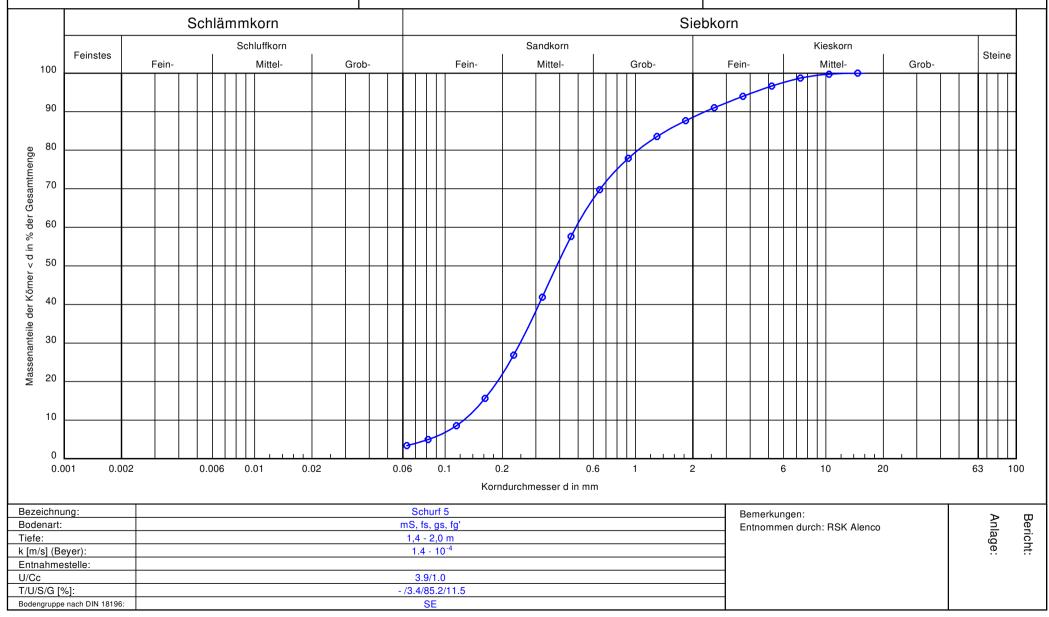
Anlage 9 Körnungslinien

5 Seiten

Baugrundlabor Dr. Hölzer

Hanfröste 1 76646 Bruchsal 07251-934931

Bearbeiter: Dr. Hölzer Datum: 07.11.18


Körnungslinie

Frankenthal Ostpark Projekt-Nr.: 931817 Prüfungsnummer:

Probe entnommen am: 25.10.18

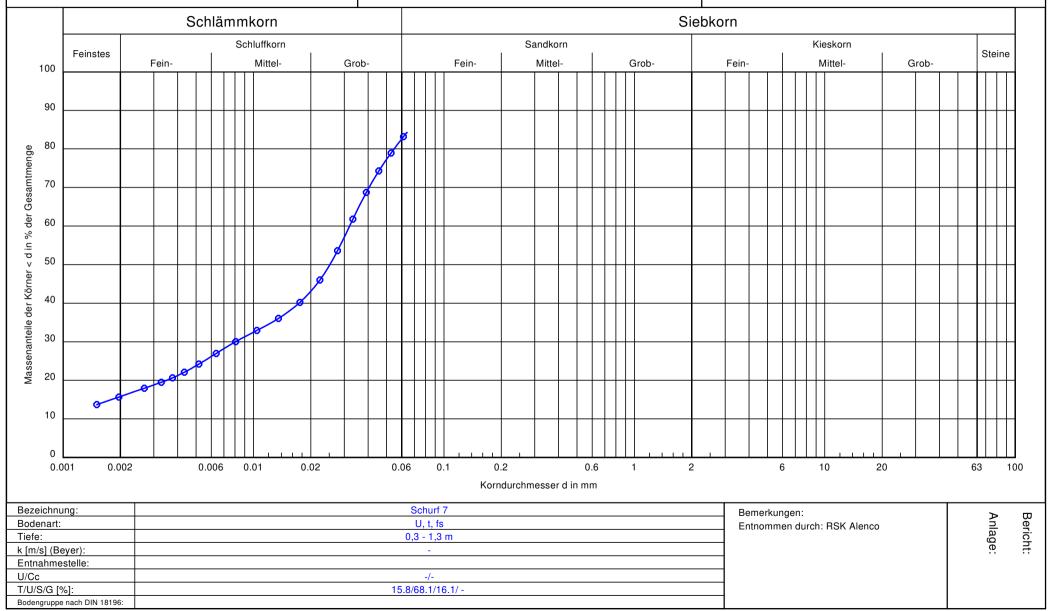
Art der Entnahme:

Arbeitsweise: Naßsiebung nach DIN EN ISO 17892-4

Baugrundlabor Dr. Hölzer Hanfröste 1

76646 Bruchsal 07251-934931

Bearbeiter: Dr. Hölzer Datum: 07.11.18


Körnungslinie

Frankenthal Ostpark Projekt-Nr.: 931817 Prüfungsnummer:

Probe entnommen am: 25.10.18

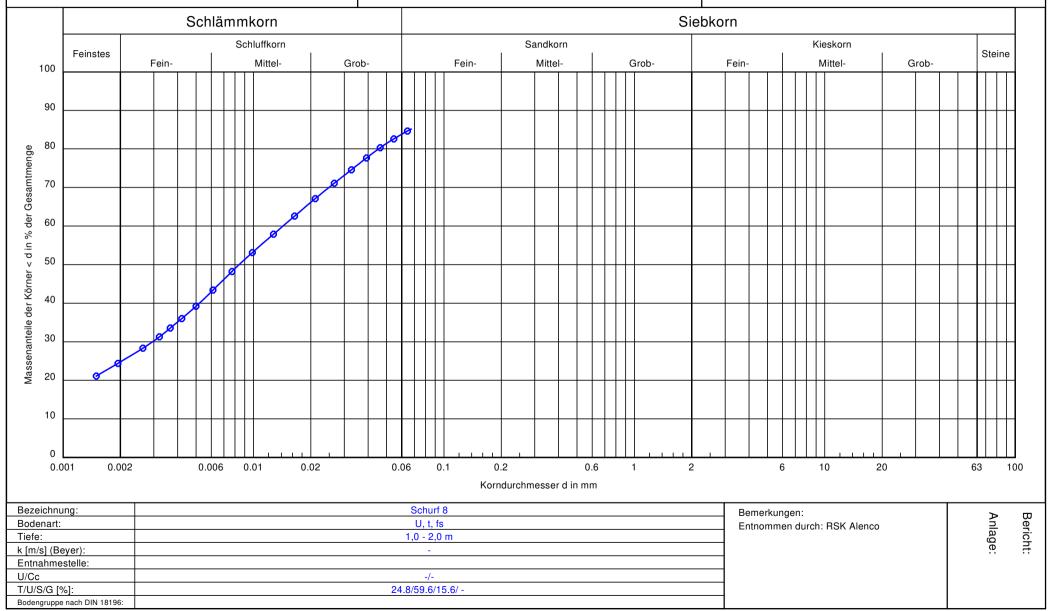
Art der Entnahme:

Arbeitsweise: Sedimentationsanalyse nach DIN EN ISO 17892-4

Baugrundlabor Dr. Hölzer Hanfröste 1

76646 Bruchsal 07251-934931

Bearbeiter: Dr. Hölzer Datum: 07.11.18


Körnungslinie

Frankenthal Ostpark Projekt-Nr.: 931817 Prüfungsnummer:

Probe entnommen am: 25.10.18

Art der Entnahme:

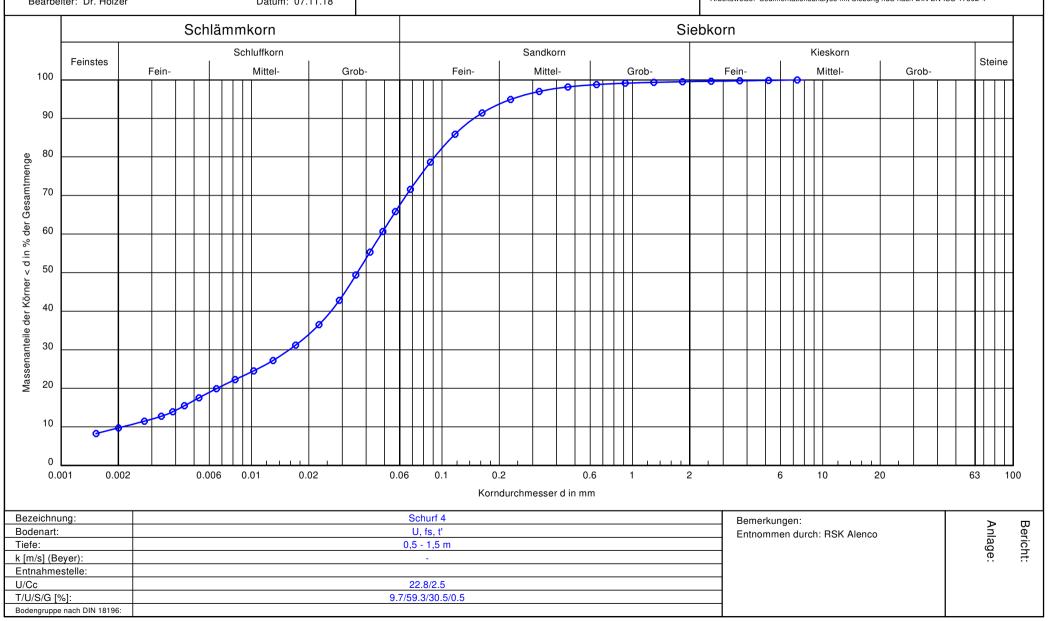
Arbeitsweise: Sedimentationsanalyse nach DIN EN ISO 17892-4

Baugrundlabor Dr. Hölzer Hanfröste 1 76646 Bruchsal

07251-934931

Bearbeiter: Dr. Hölzer Datum: 07.11.18

Körnungslinie


Frankenthal Ostpark Projekt-Nr.: 931817

Prüfungsnummer:

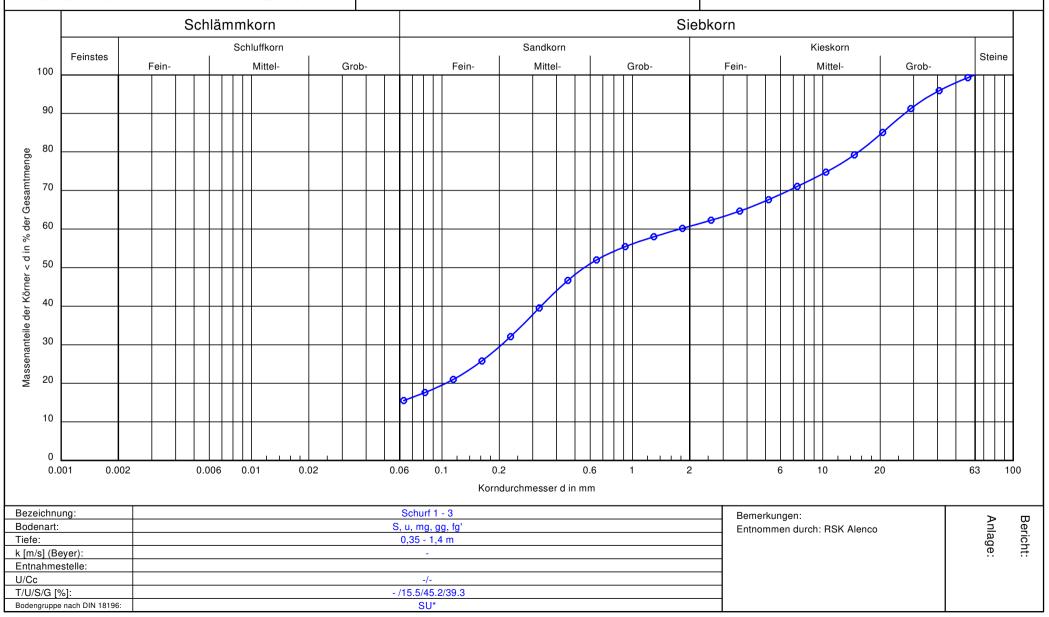
Probe entnommen am: 25.10.18

Art der Entnahme:

Arbeitsweise: Sedimentationsanalyse mit Siebung ndS nach DIN EN ISO 17892-4

Baugrundlabor Dr. Hölzer Hanfröste 1 76646 Bruchsal 07251-934931

Bearbeiter: Dr. Hölzer Datum: 07.11.18


Körnungslinie

Frankenthal Ostpark Projekt-Nr.: 931817 Prüfungsnummer:

Probe entnommen am: 25.10.18

Art der Entnahme:

Arbeitsweise: Naßsiebung nach DIN EN ISO 17892-4

Bericht Orientierende Altlasten- und Baugrunduntersuchung Ostseite des Ostparks Stadtverwaltung Frankenthal Bereich Planen und Bauen, Bericht-Nr. 931817.G01 20.12.2018

Anlage 10 Kurzbericht Georadarfreimessung

1 Seite

Elly-Beinhorn-Str.6, 69214 Eppelheim

24.10.2018

Ostpark Frankenthal Georadarmessungen vom 24.10.2018

Am 24.10.2018 wurden an den geplanten Ansatzpunkten Schurf 4 bis Schurf 6, RKS 8 bis RKS12 und Versickerungsversuch 2 Georadarmessungen durchgeführt, um eine Gefährdung durch Kampfmittel zu minimieren.

Die Messungen erfolgte mit einem Georadar von SPC Modell RD1000+ (250MHz).

Bewertung:

Die Georadarmessungen wurden an den geplanten Untersuchungspunkten durchgeführt. Den Sondierungen sind die Radargramme Sch4=5686-5687, Sch5=5692-5693, Sch6=5694-5695, VV2=5688-5689 zugeordnet. RKS8 bis RKS12 wurden ebenfalls überprüft. Eine Aussage ist bis in eine Tiefe von 1,0 bis 1,5m möglich. Es konnten keine Anomalien, die auf Wurfmunition (Bomben) hinweisen, festgestellt werden. Im Bereich von Auffüllungen ist eine Aussage über Kleinmunition nur bedingt möglich. Bei den Baggerschürfen kann die Auffüllung entfernt werden. Tiefergehende Beprobungen sollten mit einem Handbohrstock erfolgen. Aussagen über Kabel und Leitungen waren nicht Gegenstand der Überprüfung.

Auswertung:

Die Messung erfolgte durch Herrn Genc, Ing.-Geol., die Auswertung erfolgte durch Herrn Karaduman (Feuerwerker §20) und Herrn T. Wirth, Dipl.-Geol.

T. Wirth, Dipl.-Geol.

R. Karaduman, Feuerwerker §20

for

KAMPFMITTELVORERKUNDUNG

Der Osten Frankenthals am 23.03.1945 (Flugnummer: 34-3634, #3052, Ausgangsmaßstab ca. 1 : 11.000)

"Frankenthal, Am Kanal"

AUSWERTUNGSPROTOKOLL

Beweissicherung durch kombinierte Luftbild- und Aktenauswertung

Stufe 1: Kampfmittelvorerkundung & Stufe 2: Qualifizierte Verdachtsdokumentation

Auftraggeber: RSK Alenco GmbH

Projekt: Frankenthal, Am Kanal

Datum des Auftrages: 27.08.2018

Abgabedatum: 18.10.2018

1. Gutachter: Dipl.-Geogr. Stefan Schaumberger

2. Gutachter: Dipl.-Geogr. Marco Eckstein

Unser Zeichen: 180718555

Ihre Projektnummer: 931817

Ihre Bestellnummer: 5730

Dieses Gutachten bleibt unbeschadet des Nutzungsrechtes des Auftraggebers geistiges Eigentum der LUFTBILDDATENBANK DR. CARLS GMBH. Die Weitergabe darf ausschließlich als Gesamtwerk in unveränderter Form erfolgen.

Inhaltsverzeichnis

ANLAGE: ERGEBNISKARTE

1.	ZUS	AMMENFASSUNG	3
2.	AUF	GABENSTELLUNG	3
3.	AUS'	WERTUNGSGRUNDLAGEN	4
	3.1	Akten, Fachliteratur und sonstige Quellen	4
	3.2	Luftaufnahmen	4
	3.3	Bewertung der Auswertungsgrundlagen	5
4.	ERG	EBNISSE DER AUSWERTUNG	5
	4.1	Akten, Fachliteratur und sonstige Quellen	5
	4.2	Luftaufnahmen	6
5.	FAZI	т	8
6.	LITE	RATUR UND ARCHIVQUELLEN	9
	6.1	Standardliteratur zum Luft- und Bodenkrieg	9
	6.2	Archive der ehemaligen Alliierten	9
	6.3	Internetquellen	10
	6.4	Ergänzende Literatur mit spezieller Relevanz für das Auswertungsgebiet	10
ANHAI	NG I:	DOKUMENTIERTE LUFTANGRIFFE AUF FRANKENTHAL	11
ANHAI	NG II:	METHODIK DER LUFTBILDAUSWERTUNG	12
	Ziel	der Luftbildauswertung	12
	Ursa	chen der potentiellen Kampfmittelbelastung	12
	Arbe	itsgrundlagen und deren Beschaffung	12
	Vorg	ehensweise	13

ZUSAMMENFASSUNG

Das vorliegende Gutachten zum Projektgebiet "Frankenthal, Am Kanal" wurde im Rahmen der historischen Kampfmittelvorerkundung erstellt. Es liefert Erkenntnisse über eine mögliche Belastung mit Kampfmitteln. Die Auswertung stützt sich auf 50 Luftaufnahmen vom 07.04.1940 bis 27.08.1945 sowie schriftliche Quellen und führt zu folgendem Ergebnis:

Im Projektgebiet "Frankenthal, Am Kanal" konnte eine potentielle Kampfmittelbelastung ermittelt werden.

Es besteht auf etwa einem Drittel des Areals das Risiko auf Bombenblindgänger sowie Handkampfmittel zu stoßen.

Gemäß Arbeitshilfen Kampfmittelräumung besteht für die ausgewiesenen Bereiche weiterer Erkundungsbedarf (KATEGORIE 2; BMUB & BMVG 2014, AH KMR, S. 46). Zur Klärung der weiteren Vorgehensweise empfehlen wir die Konsultation des Kampfmittelbeseitigungsdienstes Rheinland-Pfalz oder einer Fachfirma für die Kampfmittelbeseitigung. Diese muss über die Zulassung nach § 7 SprengG und entsprechendes Personal mit Befähigungsschein nach § 20 SprengG verfügen.

2. AUFGABENSTELLUNG

Gegenstand der Luftbild- und Aktenauswertung ist das Flurstück 1407/22 zwischen den Straßen Am Kanal und Nachtweideweg in Frankenthal, Rheinland-Pfalz, vgl. Abb. 1:

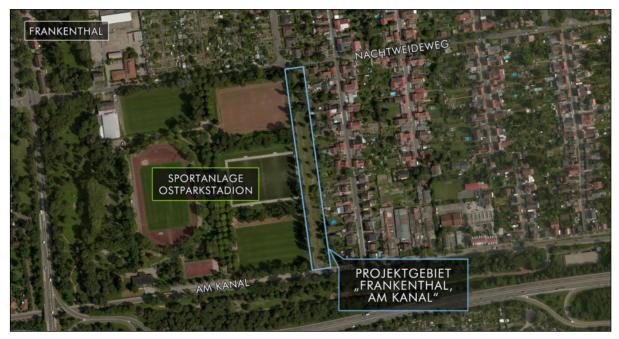


Abb. 1: Lage des Projektgebietes mit hinterlegtem aktuellem Luftbild (© Microsoft Corporation).

Zur Ermittlung der potentiellen Kampfmittelbelastung werden Unterlagen zum Zweiten Weltkrieg systematisch auf folgende Verursachungsszenarien untersucht: Luftangriffe, Bodenkämpfe, Munitionsvernichtung, militärischer Regelbetrieb, Munitionsproduktion und -lagerung (vgl. BMUB & BMVG 2014, AH KMR). Dazu zählen unter anderem Blindgängerverdachtspunkte, Bombentrichter,

bombardierte Flächen, Gebäudeschäden, Spuren von Bodenkämpfen, militärisch genutzte Areale oder potentielle Entsorgungsbereiche.

3. AUSWERTUNGSGRUNDLAGEN

3.1 Akten, Fachliteratur und sonstige Quellen

Neben der firmeninternen Fachbibliothek (mit über 550 Werken) und Internetquellen wurden historische Aktenkopien aus den Beständen der U.S. National Archives and Records Administration (NARA, College Park MD, US-amerikanisches Nationalarchiv), der U.S. Air Force Historical Research Agency (AFHRA, Maxwell AL, Archiv der US-amerikanischen Luftstreitkräfte), der Combined Arms Research Library (CARL, Fort Leavenworth KS, Bibliothek der US-amerikanischen Armee), des The National Archive (TNA, Kew, britisches Nationalarchiv) sowie des Bundesarchiv-Militärarchivs (BArch-MA, Freiburg) auf kriegsrelevante Informationen zu Frankenthal durchsucht (vgl. Kap. 4.1).

3.2 Luftaufnahmen

Die Recherche der historischen Bildflüge erfolgte in den britischen Archivbeständen des Joint Air Reconnaissance Intelligence Centre (JARIC) und der Allied Central Interpretation Unit (ACIU), der amerikanischen NARA, dem deutschen Bundesarchiv Koblenz (BAKO), der kanadischen National Air Photo Library Ottawa (NAPL), den niederländischen Luftbildsammlungen Kadaster und Wageningen sowie dem firmeneigenen Bestand der Luftbilddatenbank Dr. Carls GmbH (LBDB).

Für das Projekt "Frankenthal, Am Kanal" wurden die in Tabelle 1 aufgelisteten Luftbildserien ausgewertet. Die Aufnahmen liegen als digitale Scans in einer Auflösung von 1.200 dpi vor, um alle Bilddetails erfassen zu können (vgl. BMUB & BMVG 2014, AH KMR, S. 198). Die Bildpaare können zu stereoskopischen Auswertungszwecken verwendet werden:

Tab. 1: Liste der verwendeten Luftbilder

Lfd. Nr.	Flug-Nr.	Flugdatum	Maßstab [ca. 1 : X]	Bild-Nr.	Menge	Bildpaare
1	HAA-015	07.04.1940	75.000	1059-1060	2	1
2	D-039	18.02.1943	18.000	1153-1154	2	1
3	D-432	18.04.1943	9.000	5024-5025	2	1
4	D-538	14.05.1943	18.000	4168-4169	2	1
5	7-1372	09.05.1944	55.000	7080	1	-
6	106G-0513	25.05.1944	9.500	3014-3015	2	1
7	106G-0519	27.05.1944	10.000	4097-4098	2	1
8	106G-0585	29.05.1944	10.000	4163-4164	2	1
9	106G-1543	20.07.1944	9.000	3244	1	-
10	7-2633	03.08.1944	50.000	8005	1	-
11	7-3228	10.09.1944	60.000	7004	1	-
12	106G-3005	19.09.1944	9.500	3078	1	-
13	106G-3137	29.09.1944	10.000	3206, 3225	2	-
14	31-3113	07.10.1944	10.000	1116-1117	2	1
15	7-3510	12.10.1944	40.000	8010	1	-
16	106G-3472	01.11.1944	7.000	3028-3029	2	1
17	7-033A	17.12.1944	54.000	8048	1	-
18	34-3189	25.12.1944	11.000	4089	1	-
19	106G-3943	26.12.1944	8.000	4265-4266	2	1
20	7-3806	14.01.1945	46.000	7048	1	-

Lfd. Nr.	Flug-Nr.	Flug-Nr. Flugdatum Maßstab [ca. 1 : X]		Bild-Nr.	Menge	Bildpaare
21	7-3871	08.02.1945	31.000	8003	1	-
22	106G-4282	14.02.1945	9.000	3055-3056	2	1
23	7-128A	02.03.1945	13.000	4029-4030	2	1
24	34-3577	18.03.1945	10.000	3182-3183	2	1
25	31-4493	19.03.1945	9.500	2069-2070	2	1
26	34-3613	21.03.1945	14.000	3096-3097	2	1
27	34-3634	23.03.1945	11.000	3051-3052	2	1
2/				4005-4006	2	1
28	365-BS-2173-21	24.07.1945	40.000	20-21	2	1
29	422-BS-4207-21	27.08.1945	40.000	37-38	2	1
				Summe:	50	19

3.3 Bewertung der Auswertungsgrundlagen

Die Datenbasis (Luftbilder, Akten, Literatur) ist sehr gut. Eine belastbare Aussage zur potentiellen Kampfmittelbelastung kann somit getroffen werden.

An schriftlichen Quellen stehen für *Frankenthal* alliierte Akten aus der **NARA** und der **AFHRA** sowie überregionale Fachliteratur zur Verfügung. Diese Grundlagen liefern Informationen zum Luft- und Bodenkrieg in der Gegend (vgl. Kap. 4.1).

Es liegen zahlreiche Luftbildserien ab April 1940 vor, der Großteil aus 1944 und 1945. Die ausgewählten Bildflüge erfassen den Zeitraum der Luftangriffe von Dezember 1940 bis März 1945 (vgl. Kap. 4.1). Die Situation nach der Einnahme wird zeitnah durch drei Befliegungen ab dem 23.03.1945 dokumentiert, davon eine im Detailmaßstab.

4. ERGEBNISSE DER AUSWERTUNG

4.1 Akten, Fachliteratur und sonstige Quellen

Die Auswertung der Unterlagen führte zu dem Ergebnis, dass Frankenthal im Zweiten Weltkrieg mindestens zehnmal Ziel strategischer und gegen Kriegsende auch taktischer alliierter Luftangriffe war. Hauptangriffsziel war dabei meist der Bahnhof (1,6 km nordwestlich), durch die Nähe zu den häufig bombardierten Städten Mannheim und Ludwigshafen (8 km südöstlich) war jedoch auch das übrige Stadtgebiet Ausweichziel der Attacken auf die Rheinstädte.

Nach kleineren Angriffen in den Jahren 1940 bis 1942 erfolgte am 23.09.1943 die schwerste Bombardierung, wobei 1.253 Sprengbomben der Kaliber 500 bis 8.000 lb sowie über 380.000 Brandbomben der Kaliber 4 bis 30 lb auf Mannheim, Ludwigshafen und Frankenthal abgeworfen wurden (MIDDLEBROOK 1990, S. 433; NARA, RG243 ENTRY26 BOX15). Auch das Projektgebiet war von diesem Angriff, durch den ein Großteil der 900 m westlich des Untersuchungsgebietes gelegenen Altstadt zerstört wurde, betroffen (vgl. Kap. 4.2). Der letzte Luftangriff auf die Stadt ist für den 02.03.1945 dokumentiert.

Eine Angriffsliste zu Frankenthal ist ANHANG I zu entnehmen.

Frankenthal wurde am 21.03.1945 kampflos durch Einheiten der 12th US Armored Division und der 94th US Infantry Division besetzt (MACK 2001, S. 264).

4.2 Luftaufnahmen

Zur Dokumentation der Auswertung wurden aus der Liste der verwendeten Bildserien (vgl. Tab. 1) die in Tabelle 2 aufgeführten Luftbilder digital aufbereitet und anhand eines digitalen Orthophotos georeferenziert. Die Lage des Flurstücks (vgl. Abb. 1-3, hellblaue Markierung) wurde auf die historischen Luftbilder übertragen und mit einem Sicherheitspuffer von 50 m versehen (vgl. Abb. 1-3, dunkelblaue Markierung).

Tab.	2:	Liste	der	georeferenzierten	Luftbilder
Tub.			uci	gcorcicicinzionen	LUIIDIIGCI

Lfd. Nr. Flugdatum		Flug-Nr.	Bild-Nr.	Menge
1 29.05.1944		106G-0585	4164	1
2	21.03.1945	34-3613	3097	1
3	23.03.1945	34-3634	3052	1
			Summe:	3

Abb. 2: Das Grundstück (hellblau markiert) mit dem um 50 m gepufferten Auswertungsgebiet (dunkelblau) am 29.05.1944 (Flug-Nr. 106G-0585, #4164, Ausgangsmaßstab ca. 1 : 10.000).

Aus der visuellen Interpretation der in Tabelle 1 aufgeführten Luftaufnahmen lassen sich folgende Aussagen ableiten (vgl. Abb. 2-3):

- Das Auswertungsgebiet war zur Zeit des Zweiten Weltkrieges größtenteils unbebaut und Teil der Sportanlagen des Ostparkstadions. Die Straßen Am Kanal (im Süden) sowie Nachtweideweg (im Norden) waren bereits angelegt. Die Sportanlage wurde in der Zwischenzeit renoviert und Frankenthal östlich des Areals weiter wohnbaulich erschlossen (vgl. Abb. 1-2).
- 2. Die Bodensicht ist bei den Sportanlagen uneingeschränkt, im Zentrum wird sie durch dichte Vegetation sowie im Osten partiell durch Gebäude unbeeinträchtigt (vgl. Abb. 2-3).

Aufgrund der unterschiedlichen Aufnahmezeitpunkte der zahlreichen Luftbildserien (vgl. Tab. 1) können durch Schattenfall bedingte Erkenntnislücken minimiert werden.

- 3. Mit Flug 106G-0519 vom 27.04.1944 (vgl. Tab. 1) ist im Westen des Auswertungsgebietes ein zerstörtes Gebäude zu identifizieren (vgl. Abb. 2), das aus dem schweren Luftangriff vom 23./24.09.1943 (vgl. ANHANG I) resultiert.
- 4. Zudem ist ab dem 18.03.1945 (Flug 34-3577) im Zentrum des Projektgebietes eine kreisrunde Lichtung, wahrscheinlich ein verfüllter Bombentrichter, festzustellen (vgl. Abb. 3), der keinem Luftangriff eindeutig zugeordnet werden kann. Der Durchmesser von etwa 6 m deutet auf den Abwurf einer 500 lb Sprengbombe hin.
- 5. Innerhalb der ausgewiesenen Sicherheitszone von 50 m um die ermittelten Bombardierungen ist mit Bombenblindgängern zu rechnen (vgl. ERGEBNISKARTE).
- 6. Im Westen des Auswertungsgebietes sind bereits ab dem 18.04.1943 (vgl. Tab. 1) mehrere Stellungen zu identifizieren, welche bis Kriegsende bestehen (vgl. Abb. 3 & ERGEBNISKARTE). Diese Hohlformen können als Entsorgungsflächen gedient haben. Es besteht hier das Risiko auf zurückgelassene/entsorgte Kampfmittel zu stoßen.
- 7. Den Nachkriegsbefliegungen ab dem 23.03.1945 sind analog zu den Befunden in Kap. 4.1 keine Hinweise auf eine Belastung des Auswertungsgebietes durch Bodenkampfhandlungen zu entnehmen.

Abb. 3: Ein Bombentrichter und mehrere Stellungen im Projektgebiet im Luftbild vom 21.03.1945 (Flug-Nr. 34-3613, #3096, Ausgangsmaßstab ca. 1 : 14.000).

Tab. 3: Koordinatenliste der ermittelten Befunde (UTM Zone 32)

Lfd. Nr.	Befund	Rechtswert	Hochwert	A [m ²]		
1	Bombentrichter	454564	5487414	21		
2	beschädigte Bausubstanz	454492	5487444	30		
3	Stellung	454543	5487427	8		
4	Stellung	454559	5487319	18		
5	Stellung	454564	5487286	7		
6	6 Stellung 454566 5487266					
Sicherheitszone im Baugebiet						

5. FAZIT

Für das Projektgebiet "Frankenthal, Am Kanal" konnte nach Auswertung der vorliegenden Luftbildserien und Unterlagen eine potentielle Kampfmittelbelastung ermittelt werden.

Auf etwa einem Drittel des Flurstücks ist mit Bombenblindgängern zu rechnen (Verursachungsszenario Luftangriffe).

Bei den Stellungen besteht eine potentielle Belastung durch entsorgte und verschüttete Munition und Handkampfmittel (Verursachungsszenario Munitionsvernichtung).

Die ermittelten Befunde können der ERGEBNISKARTE sowie entsprechend nummeriert der Koordinatenliste in Tabelle 3 entnommen werden.

Gemäß Arbeitshilfen Kampfmittelräumung besteht für die ausgewiesenen Bereiche weiterer Erkundungsbedarf (KATEGORIE 2; BMUB & BMVG 2014, AH KMR, S. 46). Wir empfehlen die Konsultation des Kampfmittelbeseitigungsdienstes Rheinland-Pfalz oder einer Fachfirma für die Kampfmittelbeseitigung. Diese muss über die Zulassung nach § 7 SprengG und entsprechendes Personal mit Befähigungsschein nach § 20 SprengG verfügen.

(S. Schaumberger)

Dipl.-Geogr.

1. Gutachter

(M. Eckstein)

Dipl.-Geogr.

2. Gutachter

LITERATUR UND ARCHIVQUELLEN

6.1 Standardliteratur zum Luft- und Bodenkrieg

- BLÄSI, H. (1997): Einsätze des 42nd Bombardment Wing der 1st Tactical Air Force (P) gegen Ziele im Reich 1. Dezember 1944 bis Mai 1945 (unveröffentlichte Zusammenstellung zur 12. U.S. Air Force). ohne Ortsangabe.
 - Auflistung der taktischen Angriffe der United States 12th Air Force.
- CARTER, K.C. & MUELLER, R. (Hrsg., 1991): Combat Chronology 1941-1945 U.S. Army Air Forces in World War II, 2. Aufl. Washington D.C.
 - Beschreibung der Operationen der US Army Air Forces.
- DAVIS, R.G. (2006): Bombing the European Axis Powers: A Historical Digest of the Combined Bomber Offensive, 1939-1945. Maxwell AL.
 - Chronologische Zusammenfassung der alliierten Bomberoffensive.
- FREEMAN, R.A. (1986): Mighty Eighth War Diary, 3. Aufl. London.
 - Beschreibung der Einsätze der United States 8th Air Force.
- MEHNER, K. (Hrsg., 1984-1995): Die geheimen Tagesberichte der Deutschen Wehrmachtführung im Zweiten Weltkrieg 1939-1945, 12 Bände. Osnabrück.
 - Gegenseitige Lageberichterstattung von Wehrmachts-, Heeres- und Luftwaffenführung.
- MIDDLEBROOK, M. & EVERITT, C. (1990): The Bomber Command War Diaries An Operational Reference Book: 1939-1945, 2. Aufl. London.
 - Beschreibung der Angriffe der britischen Royal Air Force.
- SCHNATZ, H. (1998): Einsätze der 9. BD, 9. AF über dem Reichsgebiet 12.09.1944-03.05.1945 (unveröffentlichtes Manuskript zur 9. US Air Force). Koblenz.
 - Auflistung der taktischen Angriffe der 9th Bomb Division, 9th United States Air Force.
- WILLIAMS, M.H. (Hrsg., 1994): United States Army in World War II Special Studies: Chronology 1941-1945. Washington D.C.
 - Chronologie zu weltweiten Vorgängen bei den US-Bodentruppen im Zweiten Weltkrieg.

6.2 Archive der ehemaligen Alliierten

AIR FORCE HISTORICAL RESEARCH AGENCY (AFHRA), Maxwell AL.

1ST TACAF COSUMS; Mikrofilm C5032

8TH AIR FORCE S.A. & K. REPORTS; Mikrofilme A5225 - A5240

8TH AIR FORCE MISSION REPORTS; Mikrofilme A5925 – A5999, B5000 – B5032

IX BOMBER COMMAND MISSIONS; Mikrofilme B5795 – B5810

IX TAC OPERATIONS SUMMARIES; Mikrofilme B5860 - B5861

XII TAC DAILY SUMMARIES OF OPERATIONS; Mikrofilme A6353 – A6356

15TH AIR FORCE WEEKLY OPERATION SUMMARIES; Mikrofilme A6379 – A6390

15TH AIR FORCE TARGET & DUTY SHEETS; Mikrofilme A6432 – A6434

15TH AIR FORCE MISSION REPORTS; Mikrofilme A6440 – A6515

XIX TAC MISSION REPORTS; Mikrofilme B5909 - B5933

XXIX TAC MISSION REPORTS; Mikrofilme B5945 – B5962

NATIONAL ARCHIVES RECORDS ADMINISTRATION (NARA), College Park MD.

USSBS SEC 4/2N/4I, DAILY OPERATIONS OF RAF BOMBER COMMAND; RG 243/Entry 26/ Box15

USSBS Sec 4/3a, Damage assessment photo intelligence reports of European targets; RG 243/Entry 27

WORLD WAR II OPERATIONS REPORTS, 1940 – 1948; RG 407/Entry 427

THE NATIONAL ARCHIVE (TNA), Kew GB.

SECOND TACTICAL AIR FORCE DAILY LOG; AIR 37/714 - 37/718

GROUP OPERATION ORDERS; AIR 14/3086 - 14/3136

6.3 Internetquellen

BUNDESMINISTERIUM FÜR UMWELT, NATURSCHUTZ, BAU UND REAKTORSICHERHEIT (BMUB) & BUNDESMINISTERIUM DER VERTEIDIGUNG (BMVG) (Hrsg., 2014): Arbeitshilfen Kampfmittelräumung – Baufachliche Richtlinien zur wirtschaftlichen Erkundung, Planung und Räumung von Kampfmitteln auf Liegenschaften des Bundes (AH KMR). – Berlin & Bonn.

URL: http://www.arbeitshilfen-kampfmittelraeumung.de/downloads.html

6.4 Ergänzende Literatur mit spezieller Relevanz für das Auswertungsgebiet

MACK, H. J. (2001): Das Kriegsende in Rheinland-Pfalz – Kämpfe und Besetzung 1945. – Mainz.

NOSBÜSCH, J. (1982): Damit es nicht vergessen wird... - Pfälzer Land im Zweiten Weltkrieg: Schauplatz Südpfalz. – Landau/Pfalz.

ANHANG I: DOKUMENTIERTE LUFTANGRIFFE AUF FRANKENTHAL

Bewaffnung:

Abwurfmittel

GP General Purpose, Sprengbomben
HE High Explosive, Sprengbomben
IB Incendiary Bombs, Brandbomben
MC Medium Capacity, Sprengbomben

SAP Semi Armor Piercing, panzerbrechende Sprengbomben

TI Target Indicator, Zielmarkierer

Einheiten:

1st TACAF
BC
First Tactical Air Force (provisional) der United States Army Air Force USAAF
BC Bomber Command, strategischer Bomberverband der Britischen Royal Air Force

RAF britische Royal Air Force, vorwiegend strategische Bomber
US 8 AF 8th Air Force der United States Army Air Force USAAF
US 9 AF 9th Air Force der United States Army Air Force USAAF

XII TAC XII Tactical Air Command der 1st TACAF
XIX TAC XIX Tactical Air Command der US 9 AF

Lfd. Nr.	Datum	Einheit	Anzahl Bomber	Bewaffnung	Ziel	Quelle
1	17.12.1940	k.A	k.A	k.A	Frankenthal	Mehner Band 2
2	06/07.08.1941	k.A	k.A	k.A	Frankenthal	Mehner Band 3
3	06.07.12.1942	k.A	k.A	k.A	k.A	Mehner Band6
4	23/24.09.1943	ВС	571	3 x 8.000 lb HE, 291 x 4.000 lb HE, 88 x 2.000 lb HE, 102 x 1.000 lb GP, 583 x 1.000 lb MC, 20 x 500 lb GP, 166 x 500 lb MC, 135 x 250 lb TI, 27.884 x 30 lb IB, 352.400 x 4 lb IB	Mannheim, Ludwigshafen, Frankenthal	Middlebrook Everitt, NARA RG 243 Entry 26 Box 15
5	08.09.1944	US 8 AF	359	2.016 x 1.000 lb GP 1/10 x 1/40	Ludwigshafen, Frankenthal	AFHRA MF A5990, Nosbüsch
6	05.11.1944	US 8 AF	1	6 x 1.000 lb GP 1/10 x 1/10 oder 1/10 x 1/40	Frankenthal	AFHRA MF B5003, Davis
7	30.12.1944	US 9 AF, XIX TAC	10	11 x 1.000 lb GP	Frankenthal Bahnhof	AFHRA MF B5920
8	29.01.1945	US 9 AF, XIX TAC	15	8 x 500 lb GP	Frankenthal Bahnhof	AFHRA MF B5923
9	29.01.1945	1 st TACAF, XII TAC	12	4 x 500 lb SAP	Frankenthal Bahnhof	AFHRA MF A6355
10	02.03.1945	k.A	k.A	k.A	k.A	Mack

ANHANG II: METHODIK DER LUFTBILDAUSWERTUNG

Ziel der Luftbildauswertung

Die vorliegende Luftbildinterpretation im Zuge der Kampfmittelvorerkundung hat die Erfassung und Lokalisierung von luftsichtigen Kriegsschäden und Belastungen des Untergrundes infolge von Kriegsereignissen des Zweiten Weltkriegs zum Ziel.

Ursachen der potentiellen Kampfmittelbelastung

Die Ursachen für mögliche Belastungen des Untergrundes mit Kampfmitteln lassen sich in erster Linie auf Angriffe der alliierten strategischen und taktischen Bomberverbände zurückführen.

Aufgrund des hohen Gefahrenpotentials, das auch heute noch besonders von Sprengbombenblindgängern ausgeht, ist in den von diesem Bombentyp betroffenen Bereichen von einer hohen potentiellen Kampfmittelbelastung auszugehen. Im Gegensatz dazu ist die Gefährdung, die durch Blindgänger von Brandbomben verursacht wird, als wesentlich geringer einzuschätzen.

Aus der Fachliteratur geht hervor, dass ca. 10-15 % aller im Zweiten Weltkrieg abgeworfenen Sprengbomben nicht zur Detonation gelangten. In einem nachweislich bombardierten Gebiet muss deshalb immer mit Blindgängern gerechnet werden, auch wenn sie luftsichtig nicht (mehr) zu erkennen sind. In der Praxis hat sich eine Sicherheitszone von etwa 50 m um einen ermittelten Befund bewährt. In diesem sogenannten Nahbereich muss verstärkt mit Blindgängern gerechnet werden, die in das Erdreich eingedrungen sein können. Die bei der Luftbildauswertung ermittelten Sprengbombeneinwirkungen (Blindgängerverdachtspunkte, Bombentrichter, zerstörte Bausubstanz, bombardierte Flächen) werden um 50 m gepuffert, um eine erhöhte Sicherheit der Befunde gewähren zu können.

Neben den Auswirkungen der Luftangriffe müssen im Rahmen einer räumlich differenzierten Beurteilung der möglichen Kampfmittelbelastung auch kampfmittelrelevante Flächennutzungen berücksichtigt werden. Dabei handelt es sich insbesondere um Teilflächen, auf denen mit Munition bzw. konventionellen Sprengstoffen jedweder Art umgegangen wurde oder umgegangen worden sein könnte. Aus diesem Grund werden bei der Erfassung der potentiellen Kampfmittelbelastung auch militärisch genutzte Areale (Flakstellungen, Kasernen, Übungsgelände, etc.) und potentielle Entsorgungsbereiche (z.B. Hohlformen, geschobene Flächen, Bombentrichter) sowie Bodenkämpfe berücksichtigt. Generell ist zu berücksichtigen, dass Brücken im Vorfeld der Einnahme häufig zur Sprengung vorbereitet und an den Widerlagern Sprengmittel angebracht, jedoch nicht gezündet wurden.

Arbeitsgrundlagen und deren Beschaffung

Luftbilder

Für die multitemporale Luftbildauswertung werden, soweit verfügbar, mehrere Luftbildserien aus der Zeit des Zweiten Weltkrieges als hochaufgelöste Scans (1.200 dpi) beschafft.

Dem Erwerb der Luftbilder geht eine EDV-gestützte Luftbildrecherche voraus. Die zugrunde liegenden Daten stammen aus dem Bestand der nationalen und internationalen Luftbildarchive (englische Archive JARIC, ACIU, MAPRW, amerikanisches Archiv NARA, Archiv Kanada, Archiv Holland, Bundesarchiv Koblenz und firmeneigener Bestand der Luftbilddatenbank).

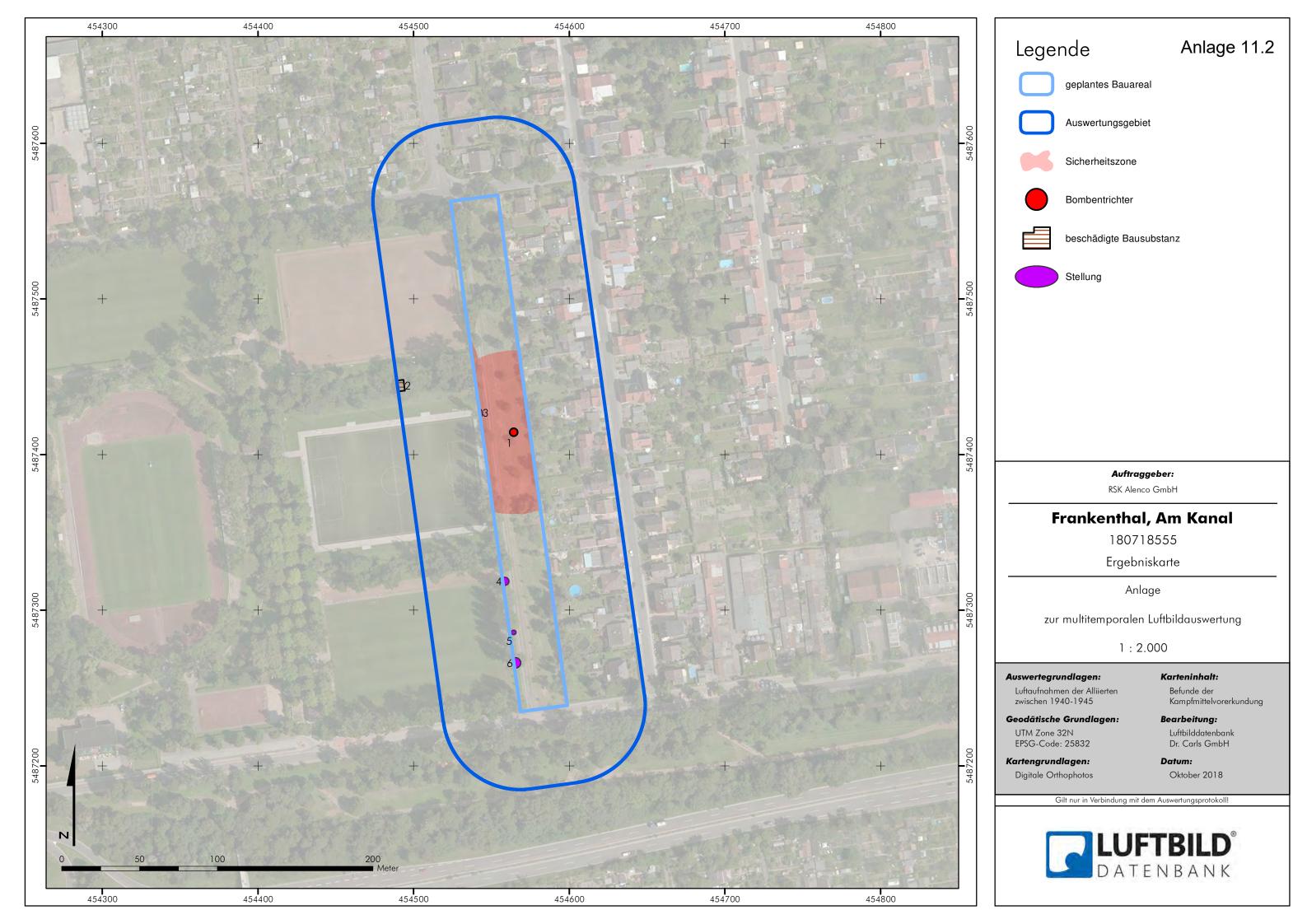
Auf Basis der Recherche wird eine Bildauswahl getroffen, die eine möglichst gute zeitliche Abdeckung (multitemporal) des gesamten Kriegszeitraums gewährleisten soll. Hierdurch können Schäden an Gebäuden sowie Veränderungen der Bodenoberfläche dokumentiert werden, welche einen Hinweis auf Bombardierungen liefern. Bombardierungsschäden wurden nach einem Luftangriff teilweise sehr rasch behoben. Je länger die Zeitspanne zwischen einem Angriff und verfügbaren Luftaufnahmen ist, umso schwieriger sind Bombardierungsschäden nachzuweisen. In manchen Fällen wurden Schäden annähernd spurenlos beseitigt. Neben einer möglichst zeitlich differenzierten Abdeckung wird die Beschaffung von Bildflügen kurz nach dokumentierten Bombardierungen angestrebt. Erkenntnislücken können aus nicht verfügbaren Luftbildserien bzw. nicht beflogenen Zeiträumen resultieren.

Um die letzten Kriegseinwirkungen durch Bodenkämpfe innerhalb eines Untersuchungsgebietes erfassen und den Endbombardierungszustand feststellen zu können, werden – soweit verfügbar – frühestmögliche Bildflüge aus der Nachkriegszeit beschafft.

Akten und Literatur

Zusätzlich zur Luftbildauswertung werden schriftliche Dokumentationen zu verschiedenen Kriegsereignissen hinzugezogen sowie eine Internet- und Gemeinderecherche durchgeführt. Die Ergebnisse liefern hilfreiche Ergänzungen zur multitemporalen Luftbildauswertung. Sie verhelfen zu einem schlüssigen Gesamtbild der Kriegsgeschehnisse innerhalb einer Region bzw. einer Ortschaft.

Die historischen Akten des US-Nationalarchives (NARA), des britischen Nationalarchives (TNA) und der Air Force Historical Research Agency (AFHRA) geben Informationen zu im Zweiten Weltkrieg durchgeführten Aufklärungsflügen sowie zu strategischen und taktischen Luftangriffen. Zum Teil wurden die Akten der taktischen Lufteinheiten verortet und können über ein geographisches Informationssystem (GIS) abgefragt werden. In Kombination mit den gewonnenen Luftbildbefunden dienen sie als wichtige Interpretationshilfe.


Vorgehensweise

Die visuelle Interpretation der Kriegsluftbilder erfolgt unter Verwendung des geographischen Informationssystems ArcGIS 10.4 (ESRI, digital). Mit Hilfe von Bildpaaren kann eine stereoskopische Auswertung durchgeführt werden, wodurch Bildfehler aufgedeckt und Bombardierungsschäden infolge des räumlichen Eindrucks gut identifiziert werden können. Im Vorfeld wird eine digitale Aufbereitung der Luftbilder mittels Adobe Photoshop durchgeführt.

Im Fokus der Luftbildauswertung stehen neben Blindgängerverdachtspunkten unter anderem Bombentrichter, beschädigte Gebäude, Flakstellungen, Flächen mit Hinweisen auf Artilleriebeschuss und Laufgräben. Das hierbei abgeleitete Schadenspotential soll Hinweise auf räumliche Schwerpunkte möglicher Belastungen mit Kampfmitteln geben. In manchen Fällen können bzgl. der potentiellen Kampfmittelbelastung lediglich Verdachtsflächen festgehalten werden.

Anschließend werden die Befunde der Luftbildauswertung mit Hilfe des GIS digital in die Kartengrundlage übertragen.

Die Ergebnisse der Luftbildauswertung werden mit den Ergebnissen der Akten- und Literaturauswertung abgeglichen. Daraus erfolgt eine Bewertung der potentiellen Kampfmittelbelastung für das Projektgebiet sowie eine Empfehlung zum weiteren Vorgehen.

