Arbeitsblatt DWA-A 138

VersickerungsExpert

aquadrat ingenieure

Seite 1

Deutsche Vereingung für Wasserwirtschaft, Abwasser und Abfall e.V.

Version 2016 Dimensionierung von Versickerungsanlagen

aquadrat ingenieure GmbH 500-1116-1234

Projekt

Bezeichnung: Datum: 17.09.2020 Spiegelgewanne

Bearbeiter: aquadrat ingenieure GmbH

Bemerkung:

Angeschlossene Flächen							
Nr.	angeschlossene Teilfläche A_E [m²]	mittlerer Abfluss- beiwert Psi,m [-]	undurchlässige Fläche A_u [m²]	Beschreibung der Fläche			
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20	2110,00	0,50	1055,00	Gebäude Küche			
Gesamt	2110,00	0,50	1055,00				

Risikomaß

Verwendeter Zuschlagsfaktor f_z

1,2

VersickerungsExpert

aquadrat ingenieure

Deutsche Vereingung für Wasserwirtschaft, Abwasser und Abfall e.V.

Version 2016
Dimensionierung von Versickerungsanlagen

aquadrat ingenieure GmbH 500-1116-1234

Datum: 17.09.2020

Projekt

Bezeichnung: Spiegelgewanne

Bearbeiter: aquadrat ingenieure GmbH

Bemerkung:

Eingangsdaten

angeschlossene undurchlässige Fläche A_u 1055 m² mittlere Versickerungsfläche A_S 180 m² wassergesättigte Bodendurchlässigkeit k_f 5.0e-5 m/s

Niederschlagsbelastung Kostra Regendaten, Frastweiothal (Pfalz), S21/Z74

n 0,02 1/a

Zuschlagsfaktor f_z 1,2

Bemessung der Versickerungsmulde						
D [min]	r_D(n) [l/(s·ha)]	V [m³]	Erforderliche Größe der Anlage			
5	504,0	20,8				
10	368,9	29,6	erforderliches Speichervolumen $V = 53,3 \text{ m}^3 \qquad V = \left[(A_u + A_S) \cdot 10^{-7} \cdot r_{D(n)} - A_S \cdot \frac{k_f}{2} \right] \cdot D \cdot 60 \cdot f_Z$			
15	301,5	35,4				
20	258,8	39,5				
30	206,2	45,3				
45	162,3	50,4				
60	136,3	53,3	mittlere Einstauhöhe			
90	96,9	48,4				
120	76,1	42,3	$z = 0.30 \text{ m}$ $z = V / A_S$			
180	54,1	28,3	·			
240	42,4	12,7				
360	30,2	0,0	rechnerische Entleerungszeit			
540	21,5	0,0	$t_E = 3.29 \text{ h}$ $t_E = 2 \cdot z / k_f$			
720	16,9	0,0				
1080	12,0	0,0				
1440	9,4	0,0	Nachweis der Entleerungszeit für n=1/a			
2880	5,5	0,0	vorh. t_E = 0,68 h < erf. t_E = 24 h			
4320	4,0	0,0				